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Abstract

Major cities worldwide experience problems with the performance of their road transportation
systems, and the continuous increase in traffic demand presents a substantial challenge to the
optimal operation of urban road networks and the efficiency of traffic control strategies. Al-
though robust and resilient transportation systems have been extensively researched over the
past decades, their performance under an ever-growing traffic demand can still be questionable.
The operation of transportation systems is widely believed to display fragile property, i.e., the
loss in performance increases exponentially with the linearly increasing magnitude of disrup-
tions, which undermines their continuous operation. Nowadays, the risk engineering community
is embracing the novel concept of antifragility, which enables systems to learn from historical dis-
ruptions and exhibit improved performance as disruption levels reach unprecedented magnitudes.
In this study, we demonstrate the fragile nature of road transportation systems when faced with
demand or supply disruptions. First, we conducted a rigorous mathematical analysis to establish
the fragile nature of the systems theoretically. Subsequently, by taking into account real-world
stochasticity, we implemented a numerical simulation with realistic network data to bridge the
gap between the theoretical proof and the real-world operations, to reflect the potential impact
of uncertainty on the fragile property of the systems. This work aims to demonstrate the fragility
of road transportation systems and help researchers better comprehend the necessity to explicitly
consider antifragile design for future traffic control strategies, coping with the constantly growing
traffic demand and subsequent traffic accidents.

Keywords: (anti-)fragility, road transportation systems, macroscopic fundamental diagram,
model stochasticity

1. Introduction

As reported by both the U.S. Department of Transportation (2019) and Federal Statistical
Office of Switzerland (2020), motorized road traffic before the pandemic has experienced an
approximate 50% growth over the past few decades. Researchers have also found that the
continuous growth in traffic volume has consequently contributed to a rise in disruptive events,
such as severe congestion and more frequent accidents (Dickerson et al., 2000; Chang and Xiang,
2003). With evidence confirming the recovery of individual motorized traffic from the pandemic
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(Büchel et al., 2022; Marra et al., 2022; Ciuffini et al., 2023), it is expected that this upward
trend will continue in the coming decades (Zhang and Zhang, 2021).

Meanwhile, there is a common understanding that road transportation networks can exhibit
fragile properties. Fragility signifies a system’s susceptibility to exponentially escalating per-
formance deterioration as disruptions increase in magnitude. One prominent example of such
fragile characteristics is the BPR function (U.S. Bureau of Public Roads, 1964), which distinctly
illustrates with empirical data at the link level that travel time grows exponentially with traffic
flow, leading to an infinite temporal cost when the traffic influx is at the maximal density of
the network. Moreover, not limited to urban road networks, many other types of transporta-
tion systems can also display similar fragile responses to increasing disruption levels, such as in
railway (Gibson et al., 2002; Saidi et al., 2023) and aviation systems (U.S. Congress, Office of
Technology Assessment, 1984).

Researchers have devoted extensive efforts to the assessment and design of robust and re-
silient transportation systems of all kinds, such as in railway systems (Corman et al., 2014;
Larsen et al., 2014), public transportation operation (Cats, 2016; Fuchs and Corman, 2019), avi-
ation (Isaacson et al.), and road networks (Ampountolas et al., 2017; Yang et al., 2019; Leclercq
et al., 2021). However, when accounting for the ever-growing traffic volume in urban road net-
works and the exponentially escalating adversarial consequences, it is natural for us to wonder
whether the current level of robustness and resilience can still guarantee the performance of road
networks considering a long-term time horizon. Hence, we introduce the cutting-edge concept
of antifragility to explain the phenomenon that roadside performance deteriorates exponentially
with linearly growing disruptions. Previous studies discussing the fragile response, such as the
BPR function, have primarily relied on empirical data and intuitive reasoning rather than rig-
orous mathematical proof. This paper, on the other hand, serves as a proof of concept, aiming
to establish the fragile nature of road transportation systems through mathematical analysis.
Additionally, as stochasticity prevails in transportation systems in the real world, we also de-
signed a numerical simulation considering real-world stochasticity, to study to what extent such
realistic uncertainties can influence the fragile characteristics of transportation systems. The
overarching objective of this paper is to provide insights to transportation researchers for the
future design of transportation systems and control strategies to be not only robust and resilient
but also antifragile.

The remainder of this paper is structured as follows. Section 2 introduces antifragility and
reviews specific traffic-related mathematical models. Section 3 formulates the mathematical
definition of (anti-)fragility and its applications. Then we conduct the mathematical proof in
Section 4, whereas Section 5 presents the numerical simulation with real-world network and
stochasticity. With Section 6, we conclude the fragile nature of road transportation systems and
its implications for future studies.

2. Relevant Literature

Various terminologies have been proposed to evaluate the performance of road transporta-
tion systems, including their control strategies, and two commonly used terms to characterize
the extent of performance variations under stress are robustness (Duan and Lu, 2014; Shang
et al., 2022) and resilience (Mattsson and Jenelius, 2015; Calvert and Snelder, 2018). However,
the definitions of robustness and resilience can vary under different contexts, even within the
transportation domain itself, and are sometimes used interchangeably due to the different back-
grounds and points of view of the authors (Tang et al., 2020; Corman et al., 2018). In this study,
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we adopt the definition proposed in Zhou et al. (2019), wherein robustness involves evaluating a
system’s ability to maintain its initial state and withstand performance degradation when con-
fronted with uncertainties and disturbances. On the other side, resilience emphasizes a system’s
capability and promptness in recovering from major disruptions and returning to its original
state. In brief, robustness relates to resistance, whereas resilience is about recovery.

Nevertheless, these two terms can overlook the consideration of a longer timespan and the
potential escalation of disruptions, which is particularly relevant in transportation as the traffic
demand grows continuously and consequently so as the occurrences of accidents. Thus, there
is the necessity to introduce a new term to address this gap. The novel concept of antifragility
was initially proposed in Taleb (2012) and mathematically elaborated in Taleb and Douady
(2013); Taleb and West (2023), and it serves as a general concept aimed at transforming people’s
understanding and perception of risk. By embracing current risks, we can potentially leverage
and adapt to future risks of greater magnitudes. When employed in systems and control, (anti-
)fragility can be conceptualized as a nonlinear relationship between the performance and the
magnitude of disruptions. If the performance is compromised due to unexpected disruptions, the
relationship between the loss in performance and the disruptions would be convex for a fragile
system, while being concave for an antifragile system. Ever since being proposed, antifragility has
gained popularity in the risk engineering community across multiple disciplines, such as economy
(Manso et al., 2020), biology (Kim et al., 2020), medicine (Axenie et al., 2022), energy (Coppitters
and Contino, 2023), robotics (Axenie and Saveriano, 2023), and lately in transportation (Sun
et al., 2024). It should also be highlighted that although systems can be fragile by nature, proper
intervention and control strategies can enhance their antifragility against increasing disruptions
(Axenie et al., 2023).

In transportation, by unveiling the convex relationship between travel time and traffic flow
with empirical data, the BPR function (U.S. Bureau of Public Roads, 1964), as shown in Eq. 1
has given an intuitive example showing the fragility of the transportation systems on a link level.
Together with its variations (Dowling and Skabardonis, 1993; Skabardonis and Dowling, 1997),
the BPR function has been extensively applied in the estimation of the link (route) travel time
(Lo et al., 2006; Ng and Waller, 2010; Wang et al., 2014). However, to uphold the statement that
road transportation systems are fragile in general, an empirical function like BPR alone is not
sufficient without rigid mathematical proof. It is also desired to show the fragility more broadly,
i.e., not only on the link level but also on the macroscopic level, as well as for different types of
disruptions.

T = Tff

(
1 + α

(
q

qmax

)β
)

(1)

The assessment of traffic performance can be conducted at either the microscopic or macro-
scopic level, sometimes also mesoscopically (Zehe et al., 2015). However, due to the non-identical
traffic characteristics across different levels, researchers have formulated diverse models to offer a
more precise description of traffic dynamics on different levels. While some models are generated
numerically from data, others are derived through analytical methods (Mariotte et al., 2017).

The earliest study on traffic performance was carried out and described in Greenshields et al.
(1934) on a section of a highway and yielded the first Fundamental Diagram (FD), as shown in
Fig. 1(a), which exhibits the relationship between traffic flow, denoted as q, and density, denoted
as k, in the shape of a second-degree polynomial. Later, other researchers also developed FDs in
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various forms, with one of the most commonly applied FDs being proposed in Daganzo (1994),
as shown in Fig. 1(b), which is characterized by two linear functions. While the Greenshields FD
is entirely generated through fitting the polynomial coefficients with on-site data, the Daganzo
FD, on the other hand, is derived analytically by treating the traffic flow hydrodynamically and
incorporates variables with physical meanings, i.e., the free-flow speed, back-propagation speed,
and critical density, denoted as vf , w, and kc, respectively.

(a) Greenshields 2nd-degree polynomial FD (1934) (b) Daganzo two-regime linear FD (1994)

Figure 1: Mathematical models of FDs

On the network level, with the assumption of a homogeneous region, a Macroscopic Funda-
mental Diagram (MFD) can be produced by aggregating data points gathered from representative
links within this network. Similar to FDs, MFDs can be approximated through different models,
and the most widely applied approaches include polynomials and multi-regime linear functions.
MFDs can be fit numerically from field measurements as a cubic polynomial, as in Haddad and
Shraiber (2014); Sirmatel and Geroliminis (2018) and illustrated in Fig. 2(a), and therefore,
it’s commonly seen in research works simulating traffic control on a macroscopic level with a
given MFD. On the other hand, based on the framework of variation theory (Daganzo, 2005),
Daganzo and Geroliminis (2008) is the first study to analytically generate an MFD, and is often
referred to as the Method of Cuts (MoC). Instead of installing loop detectors under the pave-
ment and gathering massive traffic flow data, MoC can be applied to derive an MFD directly
from roadside variables with physical meanings, such as free flow speed, traffic signal cycle, lane
length, etc. An example of multi-regime linear functions MFD from MoC is shown in Fig. 2(b).
Leclercq and Geroliminis (2013) modified the original MoC to accommodate topology and signal
timing heterogeneity within the network. Although theoretically an infinite number of cuts can
be generated to approximate the MFD, only the practical cuts, the solid lines as shown in Fig.
2(b), are used for simplicity reasons. Although some other analytical methods have also been
proposed to produce an MFD, such as through stochastic approximation (Laval and Castrillón,
2015), Tilg et al. (2020) has demonstrated that MoC yields a more accurate upper bound for the
MFD. Lately, researchers have also explored the potential utilization of MFD in railway (Corman
et al., 2019) and aviation operations (Safadi et al., 2023), which yields some positive possibilities
of extending the MFD into other modes.

As also acknowledged in these works, some variables, particularly the parameters related to
signalization, can be hard to acquire in the real world with actuated signals. Therefore, simplified
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(a) Geroliminis 3rd-degree polynomial MFD (2013) (b) Daganzo multi-regime linear MFD (2008)

Figure 2: Mathematical models of MFDs

MFDs are also widely adopted when solving more applicational problems in the real world.
Daganzo et al. (2018) approximated a simplified MoC-based MFD using only three cuts from one
of each stationary, forward, and backward observer, and formed the uMFD. Another shortcoming
of the numerical-based MFD is that, since the data points near the maximal density are scarce
overall, the approximated MFD can lose its fidelity near the maximal density. For example, the
third-degree polynomial in Geroliminis et al. (2013) has only one real root, indicating the speed
is above zero despite the fact that the network has already reached a gridlock, which cannot be
realistic. As claimed in Daganzo and Geroliminis (2008), since MFDs should be concave, the
flow and speed are both zero by definition at maximal density.

3. Problem formulation

As explained in Section 2, an (anti-)fragile response of a system can be characterized through
a nonlinear relationship between the performance loss and the magnitude of the disruption,
as shown in Fig. 3(a). Both nonlinear functions can be represented by Jensen’s inequality
(Jensen, 1906), with either E[g(X)] ≥ g(E[X]) for a fragile response or E[g(X)] ≤ g(E[X]) for
an antifragile response. This relationship can then be determined through the second derivative
(Ruel et al., 1999), i.e., a positive second derivative featuring a convex function and hence a fragile
system and vice versa. It should be noted that the calculation of the derivatives is only possible
when the function is continuous and differentiable, which means the underlying mathematical
model representing the system needs to be known beforehand.

However, in most real-world scenarios, the mathematical function of the system is agnostic,
and only discrete measurements of the system’s performance are available. In this case, we can
calculate the distribution skewness to determine the (anti-)fragile property of the system, as
illustrated with an example of financial deficit in Taleb and Douady (2013) and Coppitters and
Contino (2023) when designing an antifragile renewable energy system. A negative skewness
represents the long tail pointing to the left and indicates an antifragile response, as shown in
Fig. 3(b).

In this paper, we address three sets of opposing concepts for the mathematical analysis when
studying the fragile nature of road transportation systems:
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(a) Nonlinear relationship for a continuous function (b) Distribution skewness for discrete measurements

Figure 3: Characteristics and identification of (anti-)fragility

- microscopic / macroscopic

- demand disruption / supply disruption

- onset of disruption / recovery from disruption

As microscopic and macroscopic traffic models were introduced in the previous Section 2, here
we start with differentiating between demand and supply disruptions, with the latter sometimes
referred to as MFD disruptions. Since traffic networks primarily involve the management of
supply and demand, we consider that any traffic disruption in the real world can be classified as
either a demand or a supply disruption. A demand disruption can be easily understood as, for
example, surging traffic due to a social event, whereas a supply disruption may indicate an im-
paired network due to external factors, such as adversarial weather or lane closure. Additionally,
since disruptions represent abnormal cases that only exist temporarily, we consider not only the
onset of disruptions but also assess the recovery process of the systems following such disruptions.
This coincides with the aforementioned definitions of robustness and resilience, i.e., robustness
is about resistance against disruptions while resilience is about the recovery from them. By con-
sidering both the onset and recovery processes, it becomes possible to compare the performance
between either robust and antifragile designs or resilient and antifragile designs. The scheme
of onset and recovery from demand or supply disruptions are illustrated in Fig. 4(a) and Fig.
4(b), and since FDs share similar profiles as MFDs, we simply use MFDs here as examples for
illustration. We denote the FD/MFD profile as G(k) and assume a constant base demand in the
network as q, resulting in an equilibrium traffic state in the network in the absence of any dis-
ruption. The initial density at equilibrium, the critical density, the new density after disruption,
and the gridlock density are denoted as k0, kc, k

′, and kmax, respectively. For the study of supply
disruptions, we introduce a disruption magnitude coefficient, denoted as r, so that the disrupted
MFD profile can be represented as (1 − r)G(k). It should also be noted that on the network
level, instead of traffic flow - density, MFD can also be represented with vehicle accumulation -
trip completion, such as in Zhou and Gayah (2021); Kouvelas et al. (2017); Genser and Kouvelas
(2022). Hence, with vehicle accumulation denoted as n, k∗ and G(k) can also be replace with n∗

6



and trip completion G(n).

(a) Onset and recovery of a demand disruption (b) Onset and recovery of a supply disruption

Figure 4: Onset and recovery of disruptions

Several assumptions need to be established to define the scope of our work. Also, as the study
of fragility involves the recovery process from disruptions, a critical condition to avoid here is
the network succumbing to a complete gridlock, where recovery is not possible anymore.

Assumption 1. We study the onset of disruptions focusing only on the two stable traffic states
before and after the disruptions, while the recovery is regarded as a gradual process of congestion
dissipation.

For the onset of demand disruptions, we assume a rapid influx of traffic into the network,
which can be characterized as an instantaneous event. For the onset of supply disruptions,
although it may take some time for the number of vehicles within the network to accumulate, we
understand it as a change from one stable traffic state G(k0) to the final stable state (1−r)G(k′),
i.e., the equilibrium points in blue as shown in Fig. 4(b). The process of recovery from demand
or supply disruptions, on the other hand, takes significantly longer as it is a traffic unloading
and congestion dissipation process instead of an instantaneous event.

Assumption 2. For demand disruptions, we assume k′ > kc, whereas k
′ < kc for supply disrup-

tions.

A surging demand should be considered a disruption only when its presence leads to a re-
duction in the network’s maximal possible serviceability, i.e., causing the traffic state to enter
the congested zone of the MFD and the flow is below the network capacity. On the other hand,
for supply disruption with the constant base demand, if the traffic state can ever surpass the
maximal capacity of the disrupted MFD profile, indicating the incoming flow is even greater
than the maximal capacity of the network after supply disruptions, then the traffic density will
continue to accumulate until the network reaches a full gridlock, and there will be no equilibrium
point in this case after a disruption, violating Assumption 1.

Assumption 3. For demand disruptions, we assume q < G(k′), whereas q < (1 − r)G(kc) for
supply disruptions.
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Likewise, the necessity of this assumption also lies in the avoidance of gridlock for both
demand and supply disruptions. If the base demand is higher than the outgoing flow after a
demand disruption or the maximal capacity of the network after a supply disruption, then the
traffic state will continue to move to complete gridlock.

4. Mathematical analysis of the fragility of road transportation systems

In this section, we conduct a mathematical analysis to evaluate the potential fragility of
road transportation systems at both microscopic and macroscopic levels. The structure of this
section is summarized in Table 1. The reason for not considering the recovery process on the
microscopic level is that researchers rarely use FDs to study the recovery from congestion on a
link level. And even if we do so, we can also easily get the same conclusion with Proposition 3
and or Proposition 6. In the subsequent study, to investigate the instantaneous disruption onset
and between different stable states, the Average Time Spent (ATS) serves as the indicator for
the overall performance of a link or a network, since ATS remains constant at any stable traffic
state. Conversely, for the examination of disruption recovery, we use Total Time Spent (TTS),
as applied in Zhou and Gayah (2021); Chen et al. (2022); Rodrigues and Azevedo (2019), to
better reflect the temporal costs for all vehicles in the process, considering that the time spent
in the network varies significantly for vehicles entering at different times.

Table 1: Structure of the mathematical proof

Disruption

Demand Supply

Micro Macro Micro Macro

Onset Proposition 1 Proposition 2 Proposition 4 Proposition 5

Recovery - Proposition 3 - Proposition 6

4.1. Demand disruption

As outlined in Section 3, the presence of a positive second derivative in performance loss
concerning the magnitude of disruption serves as an indication of the transportation system’s
fragility, therefore, to illustrate the system’s fragility to demand disruption, we analyze the
derivatives of time spent, i.e., ATS for the onset of disruptions or TTS for the recovery process,
relative to the initial disruption demand, either represented by disruption density k′ or an ini-
tial disruption demand n′ when we study the relationship between trip completion and vehicle
accumulation. If the system is neither fragile nor antifragile, this approach is expected to yield a
linearly growing loss in performance alongside the disruption and zero derivatives. Quoting and
in line with the famous statistician George Box, “All models are wrong, but some are useful,” we
employ both a numerical and an analytical FD/MFD to investigate the fragile properties under
the onset of demand disruption at both microscopic and macroscopic scales.

Proposition 1. Road transportation systems are fragile with the onset of demand disruptions
on the microscopic level.
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Proof. We choose the second-degree polynomial FD in Greenshields et al. (1934) as the numerical
traffic model and the two-regime linear FD Daganzo (1994) as the analytical traffic model.

For the Greenshields second-degree polynomial FD, the following equations describe traffic
in a stable state with a and b being the polynomial coefficients. The traffic flow q and average
speed v can be determined as in Eq. 2 and Eq. 3, with the speed-density profile shown in Fig.
5(a).

(a) Greenshields speed-density FD (b) Daganzo speed-density FD

Figure 5: Mathematical models of speed-density FDs

G(k) = ak2 + bk (2)

v(k) =
q

k
= ak + b (3)

With the sudden onset of a demand disruption k′, for a link with a given length of L, the
ATS and its first and second derivatives over such disruption density k′ are:

ATS =
L

v(k′)
=

L

ak′ + b
(4)

dATS

dk′ = −aL(ak′ + b)−2 (5)

d2ATS

dk′2 = 2a2L(ak′ + b)−3 (6)

Since the coefficient a is negative and the physical meaning of the term ak′ + b is the average
speed of vehicles on this link, which should always be positive unless in gridlock, thus, both the
first and second derivatives of ATS over k′ are positive, indicating the fragility of transportation
systems on a microscopic level.

In the Daganzo two-regime linear model, the speed-density FD can be formulated as the
following Eq. 7, as shown in Fig. 5(b).

v(k) =

{
vf , 0 ≤ k < kc

w + c
k
, kc ≤ k ≤ kmax

(7)
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When the disruption density k′ is below the critical density kc, the ATS and its first and
second derivatives are:

ATS =
L

vf
(8)

dATS

dk′ = 0 (9)

d2ATS

dk′2 = 0 (10)

With the second derivative being zero, it indicates the traffic states before kc are neither
fragile nor antifragile. However, as per Assumption 2, the congested area of the MFD is the
study focus for demand disruptions, so now we study the derivatives when k′ is over kc:

ATS =
L

v(k′)
=

L

w + c
k′

(11)

dATS

dk′ =
cL

(wk′ + c)2
(12)

d2ATS

dk′2 =
−2wcL

(wk′ + c)3
(13)

Before the disruption density k′ reaches the maximal density kmax of this link, wk′ + c > 0
always holds true, and since w < 0 as well as c > 0, therefore, both the first and second derivatives
are positive.

Proposition 2. Road transportation systems are fragile with the onset of demand disruptions
on the macroscopic level.

Proof. Likewise, on the macroscopic level, we study the fragile property based on the third-degree
polynomial MFD in Geroliminis et al. (2013) and multi-regime linear MFD based on MoC in
Daganzo and Geroliminis (2008). For MFD approximated with a third-degree polynomial, similar
to the Greenshields FD in Eq. 2, we have:

G(k) = ak3 + bk2 + ck (14)

v(k) =
q

k
= ak2 + bk + c (15)

Consequently, the ATS and its first and second derivatives are:

ATS =
L

v(k′)
=

L

ak′2 + bk′ + c
(16)

dATS

dk′ =
−(2ak′ + b)L

(ak′2 + bk′ + c)2
(17)

d2ATS

dk′2 =
3
2
(2ak′ + b)2 + 1

2
(b2 − 4ac)

(ak′2 + bk′ + c)3
L (18)
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The average speed has to be a real number, indicating Eq. 15 should have real roots, so
b2 − 4ac > 0 should hold true. Therefore, the derivatives are positive.

The MFD derived with MoC can be approximated by a series of linear functions. Likewise
to the Daganzo two-regime linear FD as in Eq. 13, for any linear function, the second derivative
is:

d2ATS

dk′2 =
−2uiciL

(uik′ + ci)3
(19)

As coefficient ci is positive for any cut since the y-intercept should always be positive by
definition of MoC, whether the second derivative is positive or negative depends solely on ui.
The cuts that intercept the MFD before the critical density kc exhibit antifragile properties
(ui > 0, in blue as shown in Fig. 6) while the others with intercepts larger than the critical
density kc show fragile responses (ui < 0, in red), with an exception in case there’s a cut at the
critical density (ui = 0, in gray). Conforming to Assumption 2, for demand disruptions, we focus
on the cuts with intercepts larger than the critical density kc (ui < 0). The second derivative for
these cuts is positive indicating a fragile property.

Figure 6: Daganzo multi-regime linear MFD

Proposition 3. Road transportation systems are fragile when going through the recovery process
from demand disruptions.

Proof. According to Assumption 1, we simplify this surging demand as a disruption that takes
place instantly in the network, denoted as n′ at time t′ = 0. As the MoC is composed of a series
of linear functions with decreasing gradients as the vehicle accumulation increases, the multi-
linear regimes can be represented into multiple sets of consecutive duo linear functions as Fig. 7
shows. The four constants a1, a2, b1, and b2 are the slope and y-intercept on the coordinates for
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the two cuts, with a2 > a1 and b1 > b2 > 0. We refer to these two linear functions as the more
congested branch and the less congested branch. Also, the critical accumulation nc here does
not represent the critical point of the entire MFD, but rather the critical accumulation of any
two consecutive cuts. After a certain period tc, the number of vehicles in the network reaches
this critical accumulation nc. And after any period t > tc, the vehicle accumulation becomes n.
We also denote the initial trip completion and critical trip completion as m0 = a1n

′ + b1 and
mc = a1nc + b1 = a2nc + b2 respectively.

Figure 7: Simplification of MoC

Any two consecutive cuts of the MFD can be formulated into the following Eq. 20:

G(n) =

{
a1n+ b1, nc ≤ n < nmax

a2n+ b2, 0 ≤ n < nc

(20)

The system dynamics can be summarized as the following Eq. 21.

dn

dt
= −G(n) + q = −ain− bi + q (21)

When the traffic states move only along a single branch, and given any initial vehicle accu-
mulation n1 at the beginning of a period from t1 to t2, the number of vehicles n2 at the end of
this period can be determined as:

∫ t2

t1

dt = −
∫ n2

n1

1

ain+ bi − q
dn (22)

t2 − t1 = − 1

ai
ln

(
ain2 + bi − q

ain1 + bi − q

)
(23)

n2 =
e−ai(t2−t1)(ain1 + bi − q)

ai
− bi − q

ai
(24)
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Therefore, with the disruption accumulation n′, and when the traffic states are on the same
branch. After any time t, the vehicle accumulation n would be:

n =
a1n

′ + b1 − q

a1
e−a1t − b1 − q

a1
(25)

The TTS in this case can be calculated as:

TTS =

∫ t

0

ndt =

∫ t

0

(
a1n

′ + b1 − q

a1
e−a1t − b1 − q

a1

)
dt (26)

= −a1n
′ + b1 − q

a21
e−a1t − b1 − q

a1
t+

a1n
′ + b1 − q

a21
(27)

Now we calculate the derivatives of TTS considering t as any positive constant.

dTTS

dn′ =
1

a1
− e−a1t

a1
(28)

d2TTS

dn′2 = 0 (29)

The second derivative of TTS is 0, indicating that when the traffic states move only along a
single branch, it shows neither fragility nor antifragility.

On the other hand, when the traffic state goes over the critical vehicle accumulation nc,
and since the MoC is a piecewise function, we calculate the TTS separately on both the more
congested and the less congested branches, denoted as TTS1 and TTS2. Since the critical time
tc is still unknown, we need to determine tc first, similar to Eq. 23.

tc = − 1

a1
ln

(
a1nc + b1 − q

a1n′ + b1 − q

)
(30)

As both a1nc + b1 and a2nc + b2 are equal to mc, we can rewrite the above Eq. 30 as:

tc = − 1

a1
ln

(
mc − q

a1n′ + b1 − q

)
(31)

Likewise to Eq. 27, the TTS1 for the more congested branch is:

TTS1 = −a1n
′ + b1 − q

a21
e−a1tc − b1 − q

a1
tc +

a1n
′ + b1 − q

a21
(32)

= −mc − q

a21
+

b1 − q

a21
ln

(
mc − q

a1n′ + b1 − q

)
+

a1n
′ + b1 − q

a21
(33)

Since TTS is the sum of TTS1 and TTS2, the second derivative of TTS would also be the
sum of the derivatives. The derivatives for TTS1 are:
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dTTS1

dn′ = −b1 − q

a1
(a1n

′ + b1 − q)−1 +
1

a1
(34)

d2TTS1

dn′2 = (b1 − q)(a1n
′ + b1 − q)−2 (35)

According to Eq. 24, the vehicle accumulation on the less congested branch from tc to t would
be:

n =
e−a2(t−tc)(a2nc + b2 − q)

a2
− b2 − q

a2
(36)

=
ea2tc(mc − q)

a2
e−a2t − b2 − q

a2
(37)

The TTS2 for the less congested branch would be:

TTS2 =

∫ t

tc

ndt =

∫ t

tc

(
ea2tc(mc − q)

a2
e−a2t − b2 − q

a2

)
dt (38)

= −e−a2t(mc − q)

a22
ea2tc +

b2 − q

a2
tc +

mc − q

a22
− b2 − q

a2
t (39)

The derivatives on the less congested branch are:

dTTS2

dn′ = −(mc − q)
1−a2

a1 e−a2t

a2
(a1n

′ + b1 − q)
a2
a1

−1
+

b2 − q

a2
(a1n

′ + b1 − q)−1 (40)

d2TTS2

dn′2 = −

(
(a2 − a1)(mc − q)

1−a2
a1 e−a2t

a2
(a1n

′ + b1 − q)
a2
a1 +

a1(b2 − q)

a2

)
(a1n

′ + b1 − q)−2

(41)

The second derivative of the whole process can be written as:

d2TTS

dn′2 =
d2TTS1

dn′2 +
d2TTS2

dn′2 (42)

=

(
b1 − q − e−a2t

a2
(a2 − a1)(mc − q)

1−a2
a1 (m0 − q)

a2
a1 − a1(b2 − q)

a2

)
(m0 − q)−2 (43)

As per Assumption 3, we have m0 − q > 0, so if a transportation system is to be fragile,
d2TTS/dn′2 should also be positive, and the following equation has to be true:

b1 − q − e−a2t

a2
(a2 − a1)(mc − q)

1−a2
a1 (m0 − q)

a2
a1 − a1(b2 − q)

a2
> 0 (44)

Since t > tc and a2 > a1, regardless of whether a2 is positive or negative, the following
relationship always holds:
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−e−a2t

a2
> −e−a2tc

a2
(45)

As the following three terms, a2 − a1, (mc − q)
1−a2

a1 , and (m0 − q)
a2
a1 are all positive, the

following relationship is true:

b1 − q − e−a2t

a2
(a2 − a1)(mc − q)

1−a2
a1 (m0 − q)

a2
a1 − a1(b2 − q)

a2
> (46)

b1 − q − e−a2tc

a2
(a2 − a1)(mc − q)

1−a2
a1 (m0 − q)

a2
a1 − a1(b2 − q)

a2
(47)

Here we substitute tc in Eq. 47 with Eq. 31 and we get:

b1 − q − (a2 − a1)(mc − q)

a2
− a1(b2 − q)

a2
= (48)

a1

(
b1 −mc

a1
− b2 −mc

a2

)
= a1(nc − nc) = 0 (49)

Hence, we have:

b1 − q − e−a2t

a2
(a2 − a1)(mc − q)

1−a2
a1 (m0 − q)

a2
a1 − a1(b2 − q)

a2
> 0 (50)

The second derivative of TTS over the disruption vehicle accumulation n′ is positive, which
indicates the fragility.

4.2. Supply disruption

While a positive second derivative of ATS or TTS on traffic demand signifies the fragility of
the road transportation network to demand disruptions, establishing a positive second derivative
of time spent concerning the magnitude of FD/MFD disruption would demonstrate the fragility
from the perspective of supply disruptions. Here we use a supply disruption magnitude coefficient
r and the disrupted FD/MFD is expressed as (1 − r)G(n). Although real-world MFD may be
decreased in various shapes, we use this simple approach as applied in Ambühl et al. (2020)
when studying the uncertainties of MFDs. The physical meaning of (1 − r)G(n) relates to the
decrease of the free-flow speed due to, e.g., snowy weather and icy roads, with the maximal
density of the network remaining unchanged. The traffic demand at equilibrium before the MFD
disruption is q = G(k0), or q = G(n0). After the supply disruption, as per Assumption 3, the
supply disruption magnitude coefficient r ∈ [0, 1) is not significantly large so the traffic demand
remains below the maximal capacity on the disrupted MFD profile, and the new equilibrium
point is q = (1− r)G(k′(r)), or q = (1− r)G(n′(r)). It should be noted that, unlike the study of
demand disruption, when studying supply disruptions, k′(r) is a dependent variable on r.

Proposition 4. Road transportation systems are fragile with the onset of supply disruptions on
the microscopic level.
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Proof. First, we study the fragile properties of the road transportation systems under the onset
of supply disruptions based on the microscopic model Greenshields FD. Here, the base demand
q is constant before and after the onset of the supply disruption, and can be used to build the
relationship between the two stable states before and after the supply disruption.

q = G(k0) = (1− r)G(k′(r)) = (1− r)(ak′(r)2 + bk′(r)) (51)

So, the traffic density of the new equilibrium point after the MFD disruption would be:

k′(r) =

√
b2 + 4aq

1−r
− b

2a
(52)

The ATS and its first and second derivatives are:

ATS =
L

v(k′)
=

Lk′(r)

q
=

L

2aq
((b2 +

4aq

1− r
)
1
2 − b) (53)

dATS

dr
= L(b2(1− r) + 4aq)−

1
2 (1− r)−

3
2 (54)

d2ATS

dr2
=

b2L

2
(b2(1− r) + 4aq)−

3
2 (1− r)−

3
2 +

3L

2
(b2(1− r) + 4aq)−

1
2 (1− r)−

5
2 (55)

As k′ has a physical meaning of disruption density, so it should have real roots with b2 +
4aq/1 − r being positive. And since 1 − r > 0, therefore, d2ATS/dr2 is always positive and
indicates the fragility property of transportation systems when faced with supply disruption on
the microscopic level. Likewise to the proof of demand disruption, the Daganzo FD is a special
case of the MoC, so we directly prove the fragility on the macroscopic level with MoC illustrated
in the following section.

Proposition 5. Road transportation systems are fragile with the onset of supply disruptions on
the macroscopic level.

Proof. As the proof of fragility under supply disruption with cubic polynomial MFDs involves
solving the roots for cubic equations, for simplicity reasons, we prove only with Daganzo MoC.
Since the traffic demand q is constant, the traffic density of the new stable state k′(r) would be:

q = (1− r)(uk′(r) + c) (56)

k′(r) =
q

1−r
− c

u
(57)

And the ATS and its derivatives are:

ATS =
Lk′(r)

q
=

L

qu
(

q

1− r
− c) (58)

dATS

dr
=

L

u
(1− r)−2 (59)

d2ATS

dr2
=

2L

u
(1− r)−3 (60)
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As per Assumption 2, when studying supply disruptions, we focus on the uncongested zone
of the MFD, meaning the slope of these relevant cuts is positive so that both derivatives are
positive.

Proposition 6. Road transportation systems are fragile when going through the recovery process
from supply disruptions.

Proof. To study the possible fragile properties of road transportation networks regarding the
recovery process from supply disruptions, we need to combine the conclusions from Proposition
3 and Proposition 5. In Proposition 3, we’ve proven the recovery process to be fragile when
the traffic state shifts from the more congested branch to the less congested branch for any two
consecutive cuts on the Daganzo MFD, or to be neither fragile nor antifragile when it stays only
on one single branch. Therefore, it can be mathematically summarized as d2TTS/dn′2 ≥ 0.
Following Assumption 2, a1 > 0 holds as the branch is below the critical density, we can easily
prove the first derivative dTTS/dn′ to be non-negative as well with Eq. 34 and Eq. 40 through
the same procedure as proving the second derivative to be positive. And for the proof of recovery
from supply disruptions, as shown in Fig. 8, likewise to Proposition 5, the relationship between
the original and new equilibrium points before and after MFD disruptions can be expressed as:

Figure 8: Recovery from supply disruption

q = un0 + c = (1− r)(un′ + c) (61)

n′(r) =
un0 + c

u(1− r)
− c/u (62)

The first and second derivatives of n′ over the supply disruption magnitude coefficient r are:
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dn′

dr
=

un0 + c

u
(1− r)−2 (63)

d2n′

dr2
=

2(un0 + c)

u
(1− r)−3 (64)

Since u and un0 + c are both positive, the derivatives of n′ over r are positive as well.
Additionally, it can be easily proven that when considering the transition from a less congested
to a more congested branch, the same conclusion also holds. As TTS is a function of n′ and n′ is
again a function of r, by applying the chain rule, we can get the second derivative of TTS over
r as:

d2TTS

dr2
=

d

dr

(
dTTS

dn′ · dn
′

dr

)
(65)

=
d2TTS

dn′2
0

·
(
dn′

dr

)2

+
dTTS

dn′ · d
2n′

dr2
(66)

Because all the four components of the Eq. 66 have been demonstrated above to be non-
negative, thus d2TTS/dr2 is also non-negative and we’ve proven the fragile nature of road trans-
portation systems regarding the recovery process of supply disruptions.

5. Numerical simulation

Even though researchers generally consider MFDs to be well-defined, road transportation
systems in the real world and their MFDs are always subject to stochasticity all the time, as
shown in Geroliminis and Daganzo (2008); Saffari et al. (2022); Ambühl et al. (2021), and this
is the case for FDs as well (Qu et al., 2017; Siqueira et al., 2016). Therefore, when validating a
newly proposed traffic control algorithm, it has become a common practice to account for model
uncertainties and showcase the method’s robustness, such as in Geroliminis et al. (2013); Haddad
and Mirkin (2017); Zhou and Gayah (2023). In our study, however, the model stochasticity
cannot be directly reflected in the mathematical analysis, hence, it is indispensable to show the
influence of realistic stochasticity on the fragile nature of transportation systems with a numerical
simulation, i.e., whether the system still maintains the same fragile response under real-world
errors in MFD when a demand or supply disruption is present.

In this section, we simulate the disruption recovery process. The MFD of the studied region is
generated by applying MoC following Daganzo and Geroliminis (2008) with realistic parameters
in the city center of Zurich. Some parameters, e.g., free-flow speed, back-propagation speed,
maximal density, and capacity are provided in Ambühl et al. (2020) for Zurich with queried
routes in Google API and with other validation methods. The total and average lane length
for the city center is determined through SUMO with OpenStreetMap API. The average trip
length of Zurich is studied in Schüssler and Axhausen (2008). We introduce stochasticity in the
city center of Zurich with real traffic light data, which is publicized by the Statistical Office of
Zurich and accessible in Genser et al. (2023). The authors acknowledge that MoC is developed
with the premise of a homogeneous region, and given that the available data is limited to only
one main intersection in this region, we assume that this intersection serves as a representative
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sample for the city center region. Also, since the signalization in Zurich is actuated based on the
present traffic flow, they do not strictly follow a fixed-time signal cycle. Despite this actuation,
a concentrated distribution can be easily observed in the dataset and we assume the green split
of the cycle follows a normal distribution. The offset is considered to be zero in a way similar
to the actuated signal in Yokohama in Daganzo and Geroliminis (2008). According to the daily
average traffic density of Zurich in Ambühl et al. (2021), we approximate the traffic demand,
which is also the trip completion when the traffic state is at equilibrium, is about 0.6veh/s for our
studied region. This corresponds to an accumulation of around 975 vehicles in the city center.
The parameters are summarized in Tab. 2.

Table 2: Estimated parameters for the city center of Zurich

Parameters Notation Unit Value

Free-flow speed u0 m/s 12.5
Back-propagation speed w0 m/s 6.0
Maximal density κ veh/m 0.145
Capacity s veh/s 0.51
Total lane length D m 68631
Average lane length l m 167
Average trip length L m 7110
Signal cycle time C s 50
Signal green time (mean) µG s 14.8
Signal green time (std.) σG s 2.5
Offset δ s 0
Traffic demand q veh/s 0.6

As the average green time of the signal is 14.8 s and its standard deviation is 2.5 s, following
the MoC described in Daganzo and Geroliminis (2008), we can produce three groups of cuts with
the interval of one standard deviation, i.e., the green time being µG − σG, µG, or µG + σG, and
each group of cuts contains at least three cuts, as Fig. 9 shows. The group of cuts with a longer
green time of signalization yields a greater MFD, and vice versa. The MFDs share the same
maximal vehicle density of around 0.145 veh/m, which corresponds to a maximal accumulation
of about 10000 vehicles for the studied region.

Now we start the numerical simulation with different initial disruption demands n′ from 1000
to 8000 vehicles. The simulation time is 7200 seconds for each scenario with different initial
demands. Fig. 10(a) demonstrates that TTS grows exponentially with linearly increasing initial
disruption demand, which validates the fragile nature proved with mathematical analysis. The
solid, dashed, or dotted line each represents the TTS calculated under the three deterministic
MFDs with green time being µG, µG − σG, or µG + σG. Other than the black curves, there
are also 1000 scattering points forming the blue curve. Each scatter point is composed of a full
disruption recovery process sampled with equal intervals between an initial traffic demand from
1000 to 8000 vehicles. At each time step, a stochastic signal green time is chosen following the
normal distribution G ∼ N(14.8, 2.5) based on real-world data (Genser et al., 2024), leading to
an uncertain MFD profile as Fig. 10(b) shows. This is an example of how the congestion is
dissipated in the urban road network with an initial disruption of about 7000 vehicles, the green
scattering points representing the trip completion at each time step are sampled from every 100th
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Figure 9: The MFD of the city center of Zurich through MoC

point from the total 7200 time steps (seconds) for a clearer and more illustrative plotting.
Since the blue curve composed from the scattering points closely aligns with the solid curve,

it can be inferred that the influence of realistic stochasticity on the MFD is mostly negligible.
Nevertheless, an intriguing observation is that, when the disruption demand is relatively low, the
blue curve dips slightly below the MFD of the solid curve. However, the blue curve appears to
exceed the TTS of the well-defined MFD when the demand is substantial. This may indicate that
the recovery process with stochasticity can possibly have a larger second derivative (although
two linear curves share the same second derivative of zero but different slopes can yield a similar
observation). When we show the distribution of these two curves, as in Fig. 10(c), the TTS with
stochasticity has a more concentrated distribution at a lower value while having a marginally
longer tail pointing to the right, showing a more left-skewed distribution compared to the one
without realistic stochasticity. This can also be validated by calculating the skewness of these
two curves. When there is no stochasticity, the skewness is 0.67 while the skewness for the blue
curve has a value of 0.70. As a greater skewness indicates a more fragile system, it means by
introducing realistic stochasticity, the urban road network becomes even more fragile. It makes
particular sense that as per definition, a fragile system should exhibit a much more degraded
performance with larger disruptions brought by stochasticity, resulting in poor adaptability to
uncertainties.

Likewise, we showcase that supply disruptions can signify the fragile nature of transportation
systems as well. With the same simulation environment, instead of the linearly increasing initial
disruption demand, now a linearly growing supply disruption magnitude coefficient r from 0 to
0.5 is considered. The simulation of the recovery process from the supply disruption along with
1000 uniformed sampled points between 0 and 0.5 is shown in Fig. 11(a). First of all, as the blue
curve with stochasticity lies below the curve from the deterministic MFD with the mean green
time, it means that the network with stochasticity has a better performance. This performance
improvement can be attributed to the fact that, prior to reaching the maximal capacity, the
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(a) Demand disruption and TTS (b) Stochasticity on the MFD

(c) TTS distribution w/wo stochasticity

Figure 10: Numerical simulation for demand disruption with stochasticity

upper MFD in the dotted curve generated from MoC keeps a larger space from the solid curve
MFD profile compared to the distance between the lower MFD in the dashed curve. Therefore,
although the likelihood of sampling a trip completion above or below the mean MFD profile is the
same, there is a higher probability that the gained value of trip completion will surpass the loss
caused by stochasticity. Despite this gain in system performance, when we calculate the skewness
of distribution, we get a value of 0.49 for the deterministic MFD and 0.53 for the MFD when
considering uncertainty, demonstrating again that stochasticity escalates the fragile response of
the road transportation systems. Hence, the transportation systems have been demonstrated to
be fragile with numerical simulation and such fragility has been reinforced with stochasticity in
this work.

6. Conclusion

This research systematically demonstrated the fragile nature of road transportation systems
with rigorous mathematical analysis and numerical simulation under realistic stochasticity. The
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(a) Supply disruption and the TTS (b) TTS distribution w/wo stochasticity

Figure 11: Numerical simulation for supply disruption with stochasticity

mathematical proof comprehends the study of fragility under 1) microscopic - macroscopic, 2)
demand disruption - supply disruption, and 3) onset of disruption - recovery from disruption.
With essential assumptions regarding the disruption density in comparison to the critical den-
sity as well as the base traffic demand, we have validated the fragility of road transportation
systems from various perspectives. Furthermore, through a numerical simulation with realistic
data, we concluded that real-world stochasticity has a limited impact on the fragile characteris-
tics of the system but contributes to rendering the system even more fragile. As early findings
have also pointed out the possibilities of applying MFDs in other transportation modes, the
fragility observed in urban road networks may well be extended to various transportation sys-
tems. This study aims to offer insights to researchers, emphasizing the fragile characteristics of
transportation systems and encouraging the design of antifragile traffic control strategies in the
future.
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2023. A traffic signal and loop detector dataset of an urban intersection reg-
ulated by a fully actuated signal control system. Data in Brief 48, 109117.
URL: https://www.sciencedirect.com/science/article/pii/S2352340923002366,
doi:10.1016/j.dib.2023.109117.

Genser, A., Makridis, M.A., Yang, K., Ambühl, L., Menendez, M., Kouvelas,
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