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Abstract

In agent-based microsimulation models for land use (e.g., UrbanSim (2010)) or transportation
planning (e.g., MATSim-T (2010)), agents’ decisions are simulated over time in order to predict
future states of the system. The initial step is the definition of agents – usually, persons and
households. If a snapshot of the entire population of the study area, taken at the simulation’s
base year, were on hand, one could use this as an initial placement. Unfortunately, such data is
often not available due to privacy and cost constraints. To tackle this issue, one can combine
different data sources to derive a disaggregate representation of the agents, matching given
criteria like correlation structure and marginal sums. This process is referred to as population
synthesis.

We summarize recent efforts to population synthesis for microsimulation (Auld et al., 2010;
Pritchard and Miller, 2009; Ye et al., 2009; Srinivasan and Ma, 2009; Arentze et al., 2007;
Guo and Bhat, 2007). All of the aforementioned works share two tasks: (a) adjustment of an
initial population, taken from a past census or other survey data, to current constraints, and
(b) selecting households and optionally assigning them to geographic areas. We describe the
above tasks, and analyze and evaluate the characteristics of the particular approaches. This
information will hopefully be helpful for the implementation of future population synthesis
routines.

Keywords
Population synthesis, Microsimulation, Households, Disaggregation, IPF, Iterative Propor-
tional Fitting
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1 Introduction

Agent-based microsimulation models for land use (e.g., UrbanSim (2010)) or transportation
planning (e.g., MATSim-T (2010)) become more and more widespread. These models simulate
agents’ decisions over time in order to predict future states of the system. They allow for more
detailed and accurate simulation and prediction of, e.g., land pricing and travel demand than
traditional aggregate models. However, they also require disaggregate input data.

When implementing such a model, the initial step is the definition of agents and their rela-
tionships. Most frequently, in this context, the agents of the microsimulation represent the
individual people living in the study area, grouped by households. Other kinds of agents and
relationships might be of interest as well, such as employees/firms, vehicles/households, ten-
ants/buildings (Auld et al., 2010).

One feasible source for such disaggregate data is the national census that is collected for many
countries on a regular basis. However, some issues impede the utilization of untreated census
data as input for microsimulation. First, the complete census is rarely available: In many coun-
tries, only a small subsample, the so-called public-use sample, can be accessed. Information in
the sample may be randomly rounded, aggregated, or removed altogether. Second, the census
is collected rather infrequently, as much as 10 years can pass between two consecutive surveys.
This restricts the choice of the base year for the microsimulation model.

The objective of population synthesis is to compensate for the difficulties named above. The
main idea, as pioneered by Beckman et al. (1996), is to combine the census data with readily
available up-to-date aggregate data. This results in a set of agents where, on the one hand, the
distribution and correlation of the agents’ attributes are similar to those in the census, and, on
the other hand, the number of agents with a specific property matches the aggregate data.

Several case studies successfully employed synthetic reconstruction based on the original work
by Beckman et al. (1996). Bowman (2004) presents a good overview of the techniques available
in 2004. The TRANSIMS population synthesizer is described in Hobeika (2005). Frick and
Axhausen (2004) present a synthesizer for the Swiss population.

Another approach to population synthesis is to employ combinatorial optimization techniques,
as shown by Voas and Williamson (2000). This approach is compared to synthetic reconstruc-
tion in Ryan et al. (2009); Huang and Williamson (2001).

Recently, issues like the control for agent relationships, categorization detail, and memory
requirements have been scrutinized in the literature (Auld et al., 2010; Pritchard and Miller,
2009; Ye et al., 2009; Srinivasan and Ma, 2009; Arentze et al., 2007; Guo and Bhat, 2007). The
purpose of this paper is to analyze above selection of state of the art population synthesizers, to
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describe what they have in common and to analyze and evaluate their individual characteristics.
We hope that our review will be helpful for the implementation of future population synthesis
routines.

This paper reviews synthesizer procedures that have been published since 2007 that the au-
thors are aware of. We focus on synthetic reconstruction procedures for person/household
populations only; approaches using combinatorial optimization or synthesizing other kinds of
relationships are not reviewed. The accuracy of the synthesized population is outside the scope
of this paper: Every synthesis routine works with different kinds of input data, and different
measures of goodness-of-fit are used for validation of the particular synthesizers.

The remainder of this paper is organized as follows. First, we introduce the reviewed synthesiz-
ers. In the two subsequent sections we describe in detail the two primary steps each synthesis
procedure consists of, highlighting similarities and differences. We conclude with a summary.

2 Scope of the review

This section introduces the various population synthesis procedures reviewed. For each syn-
thesizer we briefly summarize the focus of the corresponding publications. Each synthesis
procedure is given a name, typeset in bold, that we will use subsequently. For the two stand-
alone synthesizers, this is the name of the synthesizer itself; for the others, the name denotes
the model that the synthesizer has been used for primarily.

PopSynWin: Auld et al. (2008) present a population synthesizer called PopSynWin, further
improvements are described in Auld et al. (2010). It has been used for synthesizing the popu-
lation of Chicago, Illinois, but can be applied to other study areas and input data as well. The
publications focus on automatic adjustment of categorization detail, and on adjusting household
selection probabilities to control for person-level constraints.

ILUTE: The ILUTE model (Salvini and Miller, 2005) uses a population synthesizer developed
by Pritchard (2008), with improvements shown in Pritchard and Miller (2009). The simulation
area of ILUTE is Toronto, Canada. The authors employ a new approach for handling large
attributes spaces during execution of the IPF procedure: The contingency table is represented
as a sparse list structure with one entry per unique combination of attributes. In addition, the
authors propose a solution for generating person/household relationships when such are not
defined by the input data.

PopGen: This synthesizer, presented by Ye et al. (2009), is another standalone software pack-
age. Its primary application was Maricopa County, Arizona, but it can be used for any other
area in the United States out of the box. A novel technique is used to simultaneously fit for
household and person marginals.
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FSUMTS: For the FSUMTS model (Srinivasan and Ma, 2009; Srinivasan et al., 2008), the
population of Tampa Bay and South-East Florida is synthesized. Instead of using a probabilis-
tic procedure for choosing desired households, the authors propose a ranking procedure that
uniquely determines the household to be selected next. Also, the authors have verified their
results very thoroughly using a back-casting approach.

CEMDAP: The work by Guo and Bhat (2007) presents a synthesizer implemented on the basis
of Beckman et al. (1996) for the CEMDAP model (Pinjari et al., 2006) of the Dallas–Fort Worth
area, Texas. The authors introduce a method for combining multiway contingency tables in a
generic fashion.

ALBATROSS: The populaton synthesizer for the Albatross model, presented by Arentze et al.

(2007), is an example of a synthesizer for a European region. The household-level distribution
is computed from the person-level distribution in a preprocessing step.

3 Fitting

Bowman (2009) presents a succinct description of population synthesis, according to which all
population synthesis procedures have two basic stages in common. We call these stages fitting

and allocation. The fitting stage computes an aggregate representation of the target population
for the base year; disaggregation is performed in the allocation stage. In all synthesizers re-
viewed, both stages are present. The following two sections describe these stages. For each
stage, we provide a general description and show approach-specific peculiarities.

3.1 Description

The purpose of the fitting stage is to fit a disaggregate sample of agents (called reference sam-

ple) to aggregated constraints (referred to as marginal sums, marginals, or control totals). For
person/household synthesis, the reference sample contains demographic data for a representa-
tive subsample of the population, potentially having spatial information removed, and/or taken
at a point in time different to the base year of the simulation. The control totals are given for
a selection of attributes, the controlled variables, present in the reference sample. For each
attribute, the desired number (or proportion) of agents per category is given. The joint distribu-
tion of controlled variables in the sample is referred to as seed.

Typically, the reference sample is created from a census, a microcensus, or from public-use
micro sample data. We assume that the demographic distribution is the same in the sample and
in our target population. The marginal sums are obtained from readily available aggregate data
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for the base year.

Marginals can be single- or multi-dimensional. An example of a three-dimensional marginal
is the joint distribution of age, sex, and education in the population. Note that, in general, a
two-dimensional marginal for variables from the domains M and N can be treated as a single-
dimensional marginal of a variable from the Cartesian product M × N . Higher-dimensional
marginals can be converted analogously. Hence, in the remainder of this paper, we consider
single-dimensional marginals only.

The Iterative Proportional Fitting procedure (IPF) estimates a distribution of control variables
with the following two properties: (a) the number of agents in a given category matches the
corresponding marginal sum, and (b) the correlation structure of the seed is retained. A multi-
dimensional contingency table or cross tabulation is initialized with the seed and the marginals.
Then, all control variables are iterated in a round-robin fashion: For each category of the cur-
rent control variable, the corresponding slice of the contingency table is scaled proportionally
so that the total number of agents matches the control total. Each such iteration is referred to
as IPF step. The loop is terminated, as soon as the relative error of the distribution vs. the
marginal sums reaches a user-specified threshold.

IPF has been first described by Deming and Stephan (1940) and is also known as matrix raking,
RAS method, or matrix scaling. The theory behind IPF is well understood, cf. Csiszár (1975);
Fienberg (1970); Mosteller (1968); Ireland and Kullback (1968); Stephan (1942). Important
features of IPF are minimization of relative entropy and preservation of cross-product ratios;
in other words, among all contingency tables that satisfy the marginal constraints, the resulting
table is the most similar one to the initial table.

Only recently, Pukelsheim and Simeone (2009) presented a proof of convergence that allows
to determine in advance whether a given contingency table converges under IPF. In practice,
for the application of population synthesis, convergence problems only occur if entire rows or
columns are zero, and the corresponding marginal is nonzero. This is discussed in Section 3.4.

In its basic formulation, IPF can estimate only one level of aggregation, i.e., it can control
either for agent-level or for group-level attributes but not for both simultaneously. Sometimes
it suffices to convert all agent-level attributes into group-level attributes; in this case, IPF can
be used on the group-level distribution (Arentze et al., 2007). For simultaneous fitting of more
than one level of aggregation, one would have to resort to another algorithm for fitting.

With the exception of PopGen, all of the synthesizers reviewed use IPF for the fitting stage. We
review the structure of the marginals and the spatial resolution for the different synthesis proce-
dures. Subsequently, we describe various refinements found in the literature. There are quite a
few propositions on how to handle the so-called “zero-cell problem” that may occur with real-
world data. Also, two modifications to the original formulation of IPF deserve attention: The
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sparse list data structure introduced by Pritchard and Miller (2009), and the automatic category
reduction described by Auld et al. (2008). Finally, we show two approaches to simultaneously
control for both agent- and group-level attributes: an algorithm similar to IPF developed by Ye
et al. (2009), and a formulation as an IPF problem on a special structure as shown by Arentze
et al. (2007).

3.2 Control dimensions

As described before, multi-dimensional control totals can be easily converted into single-
dimensional control totals with more categories. Most of the reviewed population synthesizers
use multi-dimensional marginals. The exceptions are PopGen and ALBATROSS: The special
data structures used here do not provide straightforward support for attributes with a great many
categories.

3.3 Zoning

Most synthesizers work with a spatial hierarchy: A region contains several zones, and one
or many regions form the study area. Marginals are usually provided at zone level, but the
reference sample is given region-wise. Consequently, IPF is first run at regional level using
marginals aggregated for the region, and the result becomes the seed for further IPF runs that
computes the disaggregate zone-wise population.

The ILUTE synthesizer implements two approaches to zone-level synthesis. The most straight-
forward way is to run many smaller IPF runs, one per zone; this is referred to as the zone-by-

zone approach. In contrast, the multizone approach synthesizes all zones simultaneously by
extending each control total with a zone dimension. It turns out that, with the multizone ap-
proach, the fit improves slightly (Pritchard and Miller, 2009).

However, multizone synthesis also requires more memory. The ILUTE synthesizer requires one
additional floating-point value per agent per zone. This is mainly due the sparse-list structure
described in a forthcoming subsection; with classical IPF, storage requirements multiply by the
number of zones. – All other synthesizers use the simpler zone-by-zone approach.

3.4 Zero-cell problem

As already noted by Beckman et al. (1996), especially when dealing with small geographies, it
is possible to have a non-zero marginal for a category that has no representative in the reference
sample. In this case, eventually a division by zero occurs during the execution of IPF, and the

6



outcome of the algorithm is undefined. This is referred to as the zero-cell problem in the
literature. The simplest solution to the problem is to initialize the false zero cells with an
arbitrarily small value. This assures convergence, however, a bias may be introduced. For this
reason, other solutions were sought after.

PopSynWin reduces the occurrence of zero cells using a category reduction routine; we further
describe this approach in Section 3.6. Guo and Bhat (2007) also suggest to perform a cate-
gory reduction as a preprocessing step; however, this has not been automated in the CEMDAP
synthesizer.

PopGen replaces false zero cells in the zone-level seed with an estimate computed from the
region-level seed and the number of agents in that zone. Then, it performs a simple linear fit to
account for the discrepancy introduced by incrementing cells’ values. For details, we refer the
reader to Ye et al. (2009). Similarly, the FSUMTS synthesizer “borrows” from another area to
fill false zero cells.

3.5 Sparse list

A major problem of many previous synthesizers were the memory requirements for the con-
tingency table: With every controlled variable, another dimension is added to the table. The
contingency table grows exponentially with the number of attributes; its size equals the product
of the category counts of all attributes. A large contingency table is inherently sparse: The
number of nonzero values is at most as large as the size of the reference sample. This calls for
a more efficient storage scheme of the contingency table.

Williamson et al. (1998) recommend a list-based representation in the context of population
synthesis. As the reference sample is usually given as a list of attributes, it can be used without
further treatment. The ILUTE synthesizer implements a variant of IPF that operates directly on
the list of attributes by attaching a real-valued expansion factor to each item. Every operation of
classical IPF can be translated into a change of the expansion factor, allowing the algorithm to
work entirely on the list-based representation. A detailed description can be found in (Pritchard,
2008, section 4.2.1).

For large attribute spaces and detailed categorization schemes, memory consumption is greatly
reduced. The memory required by the list-based representation is only proportional to the size
of the reference sample and the number of attributes and does not depend on categorization
detail. For the categorization scheme used by the ILUTE model, the sparse list representation
cuts down memory requirements to 0.2 % for the zone-by-zone and to 0.07 % for the multizone
approach (Pritchard and Miller, 2009).

The following two convenient properties of list-based IPF are noteworthy as well. First, all
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attributes present in the reference sample are preserved, not only the ones that are controlled
for. Second, the method natively supports simultaneous fitting for marginals with different
categorization detail.

3.6 Category reduction

Among the reviewed population synthesizers, only the one used by the ILUTE model supports
arbitrarily detailed categorization of attributes. This is attributed to the list-based IPF. All
other procedures implement classical IPF, and hence need to reduce categorization detail and/or
number of control variables in order to keep memory consumption at a reasonable level.

PopSynWin has an option to automatically aggregate categories for interval-scale attributes.
For this, the user specifies a percentage threshold that is applied to the marginals: All categories
whose marginal does not exceed this threshold are merged with a neighboring category. Apart
from decreasing the number of categories, this procedure also reduces the occurrence of false
zero cells in the seed (cf. Section 3.4).

As PopSynWin runs IPF on a region-by-region basis, different categorization schemes are ap-
plied for each region: For example, the income attribute is recategorized differently in wealthier
and poorer regions. – According to Auld et al. (2008), category reduction potentially worsens
the quality of the synthesized population. While it is a feasible remedy against the zero-cell
problem, using a sparse list as shown in the previous subsection seems to be a better solution
to the memory consumption problem.

3.7 Iterative Proportional Updating

Of all the synthesis procedures reviewed, only PopGen uses a fitting procedure different to IPF.
The new approach, named Iterative Proportional Updating (IPU), simultaneously controls for
multiple hierarchy levels (agents and agent groups) during the fitting procedure. The proposed
algorithm has many parallels to the sparse list variant of IPF. The core data structure of IPU
is a tabular list of agent groups. In this list, a count column exists for each category of each
group-level or agent-level attribute. Columns for agent-level categories contain the number of
agents (persons) in a group that belong to the corresponding category. The value of a column
for a group-level category equals one if and only if the given group belongs to this category, and
zero otherwise. An additional weight column is initialized with ones (or with group weights
taken from the reference sample). After that, each category is repeatedly considered in a round-
robin fashion. For each category, the groups with nonzero counts in the corresponding count
columns are reweighted in a fashion quite similar to sparse-list IPF. The procedure is continued
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until convergence is reached. As a result, the weights match both agent-level and group-level
constraints.

According to Ye et al. (2009), IPU performs well in practice. The authors also provide a
geometric explanation of the algorithm, however, a theoretical proof of convergence is missing.

Fitting against multidimensional marginals would require one column per combination of con-
trolled categories. The memory requirements increase exponentially with the dimensionality of
the marginal. Similarly to the sparse list approach for classical IPF, a list of lists can be used to
solve this problem. Each element of the main list of groups would then contain a list of agents
with their full attribute set.

3.8 Relation matrix

ALBATROSS uses the concept of a relation matrix to estimate a composition of households
that perfectly matches person-level constraints. The relation matrix is a specially formed con-
tingency table, consisting of two rows and two columns in the simplest case. In what follows,
we provide an example for a 2x2 relation matrix that allows to estimate the distribution of sin-
gle and male-female households for a human population. The row marginals define the total
number of females in the first column and the total number of males that live independently
in the second column. Conversely, the column marginals control for the amount of males and
single females. The interior cells of the table contain household counts: The top left cell rep-
resents the number of couples, while the bottom left and top right cells denote the number of
single-person male or female households, respectively. The bottom-right cell is a zero by defi-
nition: A household with an independently living male and an independently living female is a
contradiction in itself.

Our simple example can be extended by splitting the rows and columns. Arentze et al. (2007)
add another row and another column, each of which controls for persons like children that live
in another household and are not head of that household. Two distinct relation matrices are
created by disaggregating the first row and first column by age and work status, respectively.
As with classical IPF, the matrices are initialized with data from the reference sample. After
performing IPF on these relation matrices, the resulting distributions are used as marginals for
a classical IPF run controlling for household attributes.

While the relation matrices allow to compute a household-level distribution from a person-level
one, it remains unclear how to apply this method for other hierarchies like employees/firms or
tenants/buildings.
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4 Allocation

As shown in the previous section, the fitting stage computes an aggregated representation of the
target population. Disaggregation is performed in the allocation stage by solving the following
tasks (Bowman, 2009):

• The joint distribution estimated by IPF is adjusted to integers.

• Households are selected from the reference sample according to the fitted distribution.
The full set of variables required by the model system is retained.

• Sometimes, the geographic placement of the households is refined.

In this work, we focus on the selection task.

To the best of our knowledge, no theoretical results have been reported for the allocation stage.
Especially the integerization and the selection tasks may introduce a bias in the synthesized
population. As as consequence, a synthetic population should be validated carefully by statis-
tically comparing the estimated joint distribution and the seed (Voas and Williamson, 2001).

4.1 Description

In the allocation stage, a disaggregate set of agents and agent groups with attributes required
by the microsimulation model is computed. The result of the fitting procedure is a real-valued
group weight for each feasible combination of group categories; all of the synthesizers reviewed
use these weights to select concrete groups into the synthetic population.

Repeated probabilistic selection with replacement is the most common strategy: Groups are
drawn with a probability proportional to the group weight. If fitting does not control for agent-
level attributes, the allocation procedure can also prefer groups that best fit the agent-level
marginals. After the allocation procedure, each member of the synthetic population has clearly
defined attributes, the full set of agents match the predefined control totals, and the interactions
present in the reference sample are, to a great extent, preserved for the synthetic agents.

In this section, we review alterations to the selection procedure proposed by Auld et al. (2010)
and Pritchard and Miller (2009), and a greedy deterministic selection procedure presented by
Srinivasan et al. (2008).
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4.2 Altered selection probability

PopSynWin uses a sophisticated formula for computing group selection probabilities. This for-
mula favors groups with agents of categories still being underrepresented in the population so
far. As a result, after completion of the selection procedure, agent-level marginals are matched
approximately. Experiments confirm absolute differences of 2 % on average and at most 7 %
for rare categories for a person/household population (Auld et al., 2010).

A drawback of the improved selection probability is that it needs to be recomputed for every
group after each selection. Performing the selection naïvely would result in run times depend-
ing at least quadratically on the number of groups. Owing to that, PopSynWin implements a
heuristics that iterates over a random shuffle of the groups and recomputes the selection proba-
bility only for the current group (Auld et al., 2010).

4.3 Conditional Monte Carlo

The reference sample available for the ILUTE model is unique in the sense that it does not
contain links between households and persons. Household- and person-level distributions are
estimated independently; they are subsequently fitted against each other to ensure consistency.
It is only in the allocation stage that persons are assigned to households.

Households are repeatedly selected according to their selection probabilities. Each member
of the current household is then drawn from the subset of eligible persons according to the
persons’ selection probabilities. This ensures consistency with both household structure and
person-level marginals.

The synthesis of relationships can be carried out as described above even if the agent/group
relationships are present in the input data. According to Pritchard and Miller (2009), one should
consider whether variation in group composition outweighs the drawback of purely synthetic
agent/group relationships. The authors report only a slight worsening in goodness-of-fit when
synthesizing links.

4.4 Deterministic selection

The FSUMTS synthesizer is the only one among the reviewed procedures that does not rely on
probabilistic selection. Instead, a per-household fitness value is used as deterministic choice
criterion. The fitness value is a measure for the adherence to both household- and person-
level constraints, given the already selected households. After computing fitness values for all
households, the household with the largest fitness value is selected. This process is repeated
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until all fitness values fall below zero.

While this approach guarantees repeatability and control for both agent and group levels (Srini-
vasan et al., 2008), the fitness values potentially change after each selection. This results in run
times depending quadratically on the number of synthesized groups if implemented naïvely.
However, since the fitness values are nonincreasing with the execution of the algorithm, it
should be possible to drastically reduce the amount of computation required for each iteration
by maintaining a list of groups sorted by fitness value. After selection, the recomputation of
the fitness value for the top group in the list may result in moving this group away from the
top. By repeating this until the top group stays on top, it is guaranteed that the group with the
largest fitness value is found. This group is selected, and fitness values are readjusted again,
etc. – Unfortunately, Srinivasan et al. (2008) do not provide running times or implementation
details.

5 Summary

We have reviewed six population synthesis procedures used for various microsimulation mod-
els. Each synthesizer is used for a different region and requires different input data. While
each synthesizer has its own advantages, a superior synthesizer that incorporates all favorable
characteristics of recent approaches and allows to compare and validate them for the same input
data, is yet to be developed. Given the difficulties that routinely arise when trying to properly
create a synthetic population, it seems worthwhile to invest time to develop a generic software
solution. The software should be applicable to different kinds of input data – concerning both
geographic contexts and agent types – without code level changes. Due to the diversity of
the input and output data, however, it is likely that a single standalone program will not be
able to provide a solution for each possible application. Instead, an extendable open-source
software framework that offers routines for tasks that frequently arise in population synthesis
applications could be the method of choice.
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