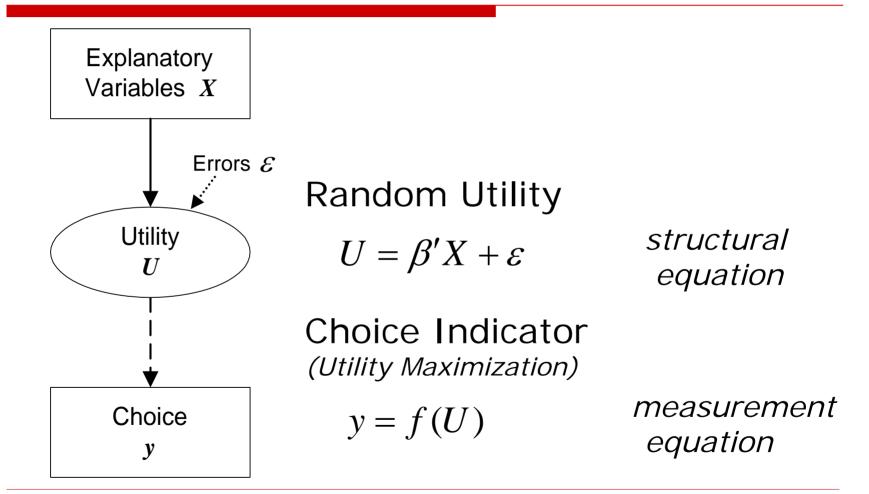
Measuring Unobservables in Behavioral Models

Joan Walker Boston University

Swiss Transport Research Conference September 2007

Outline

- Research agenda
- Methodology overview
- Applications
 - 1. Residential location
 - 2. Airline itineraries
 - 3. Environmentalism
- Conclusion

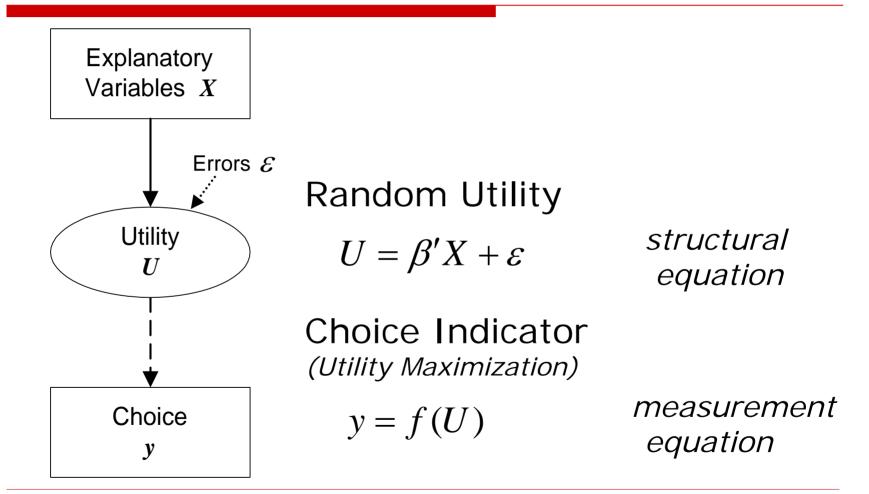

Research Agenda

- Incorporate latent variables and psychometric measurements into discrete choice models
 - Quantify attitudes, motivation, lifestyle, etc.
 - "Behavioral mixing"
- Approach: Integrate discrete choice models and latent variable models

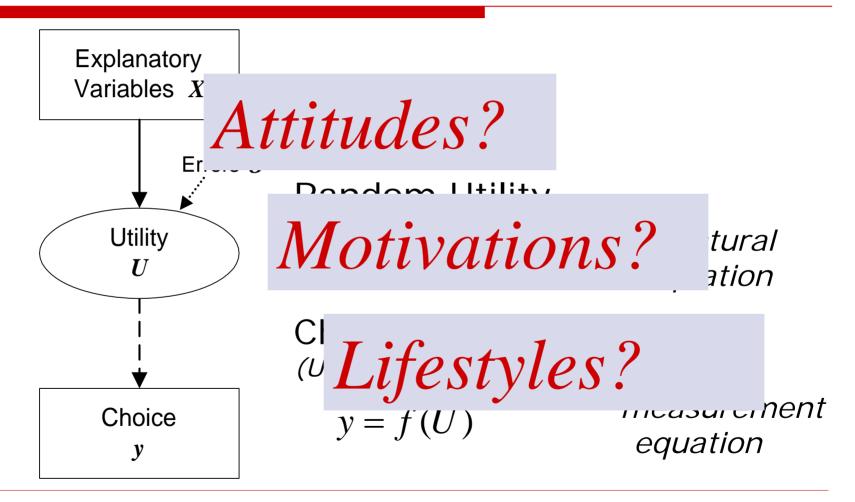
This presentation

- Overview
- □ 3 Applications
 - Demonstrate that behavioral mixing produces more intuitively appealing models
 - Leading to improved prediction and policy analysis

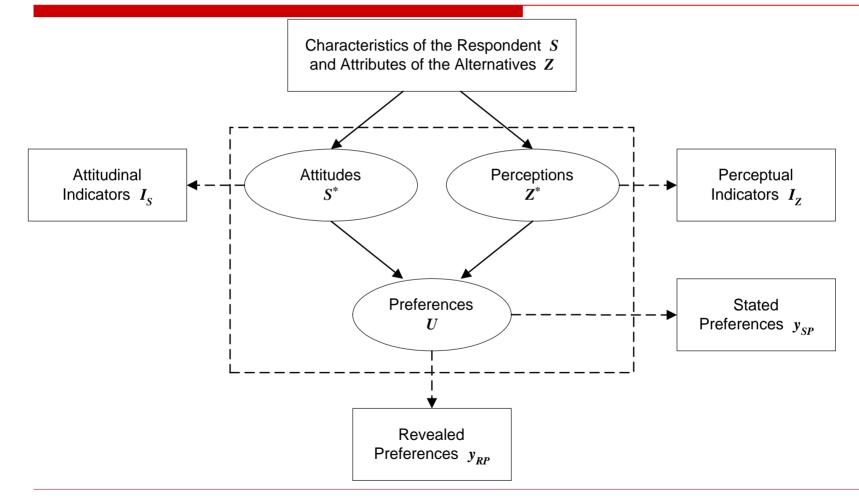
Discrete Choice Model



Choice Probability


Distribution of *E*Logit (iid Extreme Value) $P(i \mid X) = \frac{e^{\beta' X_i}}{\sum_{j \in C} e^{\beta' X_j}}$

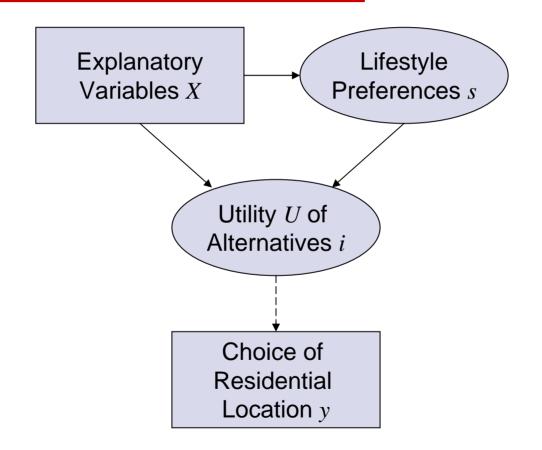
- Probit (Normal)
- Mixtures (Random β)


Discrete Choice Model

Discrete Choice Model

Opening the Black Box

APPLICATION I


Residential Location & Lifestyle Segmentation (with Li)

Approach

- Objective: Introduce "lifestyle" in models
- Hypothesis
 - □ Lifestyle preferences exist
 - Lifestyle differences lead to differences in considerations, criterion, and preferences for residential location choices.
- Infer "lifestyle" preferences from choice behavior using latent class choice model.
 - □ Latent classes = lifestyle
 - Choice model = location decisions

Residential Location Choice Model with Latent Lifestyle Segmentation

Choice Experiment Example

	(Alternative 1)	(Alternative 2)	(Alternative 3)	(Alternative 4)	(Alt. 5)
	Buy	Buy	Rent	Rent	
	Single Family	Multi-Family	Single Family	Multi-Family	
Type of Dwelling :	single house	apartment	duplex / row house	condominium	
Residence Size :	< 1,000 sq. ft.	500-1,000 sq. ft.	1,500 - 2,000 sq. ft.	< 500 sq. ft.	Move
Lot Size :	< 5,000 sq. ft.	n/a	5,000 - 7,500 sq. ft.	n/a	out
Parking :	street parking only	street parking only	driveway, no garage	reserved, uncovered	of the
Price or Monthly Rents :	< \$75K	\$50K - \$100K	> \$1,200	\$300 - \$600	Metro
Community Type :	mixed use	mixed use	rural	urban	Area
Housing Mix :	mostly single family	mostly multi-family	mostly multi-family	mostly multi-family	
Age of Development :	10-15 years	0-5 years	10-15 years	0 - 5 years	
Mix of Residential Ownership :	mostly own	mostly own	mostly rent	mostly own	
Shops/Services/Entertainment :	community square	basic shops	community square	basic, specialty shops	
Local Parks :	none	yes	none	none	
Bicycle Paths :	none	yes	yes	yes	
School Quality :	very good	very good	fair	fair	
Neighborhood Safety :	average	average	average	average	
Shopping Prices Relative to Avg :	20% more	20% more	same	10% more	
Walking Time to Shops :	20-30 minutes	20-30 minutes	< 10 minutes	10 - 20 minutes	
Bus Fare, Travel Time to Shops :	\$1.00, 15-20 minutes	\$1.00, > 20 minutes	\$0.50, 5 - 10 minutes	\$0.50, < 5 minutes	
Travel Time to Work by Auto :	> 20 minutes	15-20 minutes	15 - 20 minutes	< 10 minutes	
Travel Time to Work by Transit :	> 45 minutes	30-45 minutes	30 - 45 minutes	15 - 30 minutes	

Residential Location Choice Model with Latent Lifestyle Segmentation

□ Location choice model conditional on lifestyle preferences $P_n(i | X_n, s)$

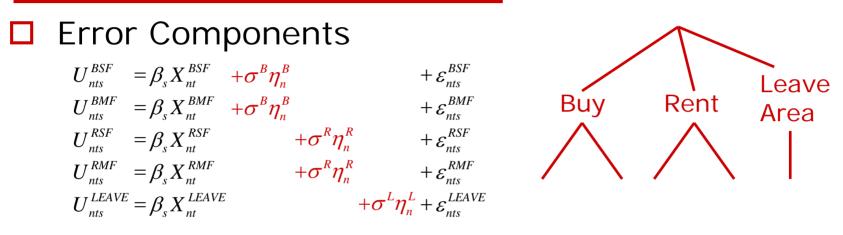
Prob (Location i | "Suburban Lifestyle", other explanatory variables)

□ Model of lifestyle preferences $P_n(s | X_n)$ *Prob* ("Suburban Lifestyle" | Income, Age, etc.)

□ Joint estimation $P_n(i | X_n) = \sum_{s=1}^{S} P_n(i | X_n, s) P_n(s | X_n)$

Extension 1: Multiple Responses per Person

□ Single response


$$P_n(i \mid X_n) = \sum_{s=1}^{S} P_n(i \mid X_n, s) P_n(s \mid X_n)$$

$$= \sum_{s=1}^{S} P_n(s \mid X_n) P_n(i \mid X_n, s)$$

Multiple responses

$$P_n(i_1,...,i_T \mid X_n) = \sum_{s=1}^{S} P_n(s \mid X_n) \prod_{t=1}^{T} P_n(i_t \mid X_{nt},s)$$

Extension 2: Continuous Mixing for Nesting

 $\eta_n^B, \eta_n^R, \eta_n^L \sim iid \ N(0,1) \quad \mathcal{E}_{nts}^{BSF}, \dots, \mathcal{E}_{nts}^{LEAVE} \sim iid \ Extreme \ Value$

Choice Model $P_n(i_1,...,i_T \mid X_n) = \int \left[\sum_{s=1}^{S} P_n(s \mid X_n) \prod_{t=1}^{T} P_n(i_t \mid X_{nt},s,\eta) \right] f(\eta) d\eta$

Estimated with Latent Gold Choice by Statistical Innovations

Overview of Estimation Results

	WITHOUT Lifestyle Segmentation	WITH Lifestyle Segmentation		
Number of classes	1	2	3	4
Number of parameters	37	76	115	155
Rho-bar-square BIC	0.210	0.213	0.211	0.204
Rho-bar-square AIC	0.222	0.238	0.248	0.254
			Ť	

Chosen

Lifestyle Segmentation Results

Latent Segment 1 →

suburban, school, auto... (shopping) affluent, more established families

← Latent Segment 2

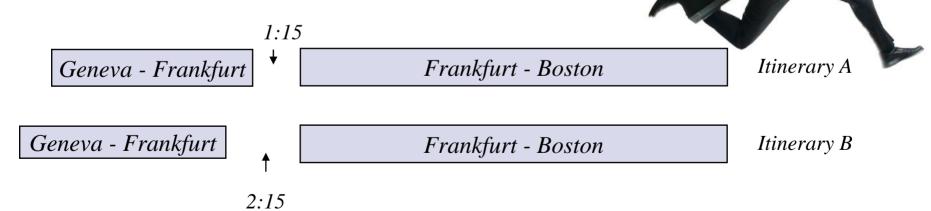
transit, school... (suburban) less affluent, younger families

Latent Segment 3 🔿

high density, urban activity... (car) older, non-family, professionals

"Have it All" mentalities

- Class 1
 - Iarge homes and auto-oriented
 - Iocal high-end shopping
- Class 2
 - suburban lifestyle
 - convenience of transit for work
- Class 3
 - auto-oriented
 - urban
- Relationship with development styles
 - Suburban? Mixed use? Transit-oriented?


Policy Implications

- How to encouraging more environmentallypositive behavior?
- Design for having it all
 - Supply demand for low-density residential, but support with viable transit to work. (Park-n-ride)
 - Accommodate car in urban (making the lifestyle more appealing to people who otherwise would reject) while making it easier not to have to use the car.

APPLICATION II

Airline Operations (with Theis)

Attitudes in Airline Itinerary Choice

- Hypothesis
 - Travelers may choose longer connection time
 - Attitudes: RISK, RUSH, TRUST
- Motivated by airline operating assumptions
 - Demand: added minutes decreases market share
 - Supply: Depeaking lowers supply-side costs

2005 Survey of U.S. Domestic Passengers

Airline

Aircraft Type

Departure Airport

Flight Times

Min. Connecting Time

Buffer Time

Number of Connections

On-time Performance

Round Trip Fare

Your Current Flight Alternate Flight AIRLINE Delta Continental AIRCRAFT TYPE Regional Jet Standard Jet Burlington International Airport, AIRPORT Logan International Airport, Boston MA Burlington VT DEPARTURE TIME 8:00 AM 5:00 PM AIRPORT Jacksonville International Jacksonville International ARRIVAL 12:00 PM 10:00 PM TIME 1 hr. 40 mins. (your connecting airport requires a (the connecting airport requires a LAYOVER TIME minimum of 40 mins. to connect) minimum of 40 mins. to connect) TOTAL TRAVEL TIME 4 hrs. 5 hrs. NUMBER OF CONNECTIONS 1 1 ON-TIME PERFORMANCE 80% of these flights are on time 90% of these flights are on time \$250 \$188 ROUND TRIP FARE I would choose: O my current flight ○ the alternate flight

Which would you choose for a trip to Jacksonville, FL?

Psychometric Indicators

□ 14 statements rated on a 5 point scale "strongly disagree" to "strongly agree"

I like to take my time when connecting between flights

It's hard for me to find my way through airports

Given two itineraries that only differ in connecting time, I always choose the one with shorter connecting time

I don't think time at airports is wasted because I can shop, eat, or work at airports

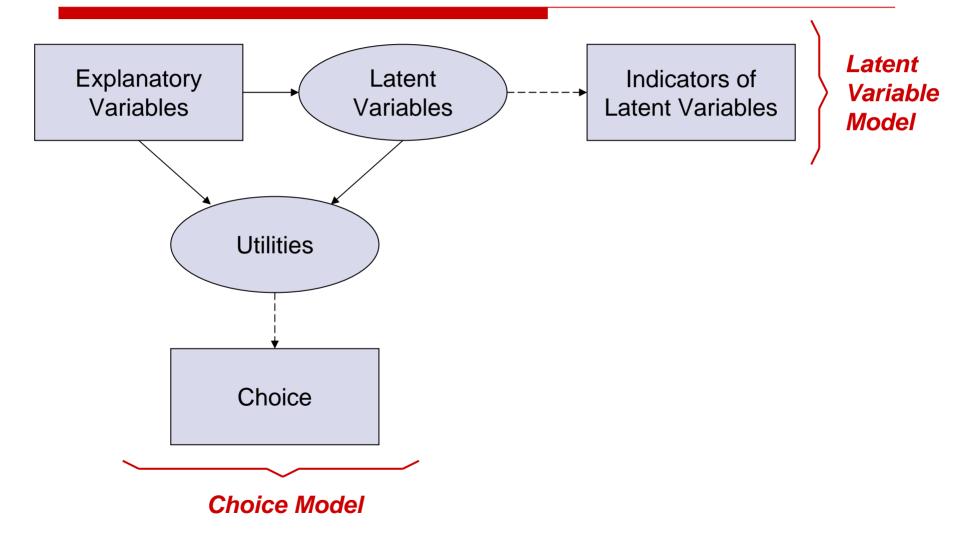
I'm willing to accept the risk of a missed connection if this gets me to my destination earlier most of the time

I usually arrive at the check-in counter just before the check-in deadline

Airlines sometimes underestimate the time needed to connect between flights

It is the passenger's responsibility to plan for a sufficient transfer time when booking a connecting itinerary

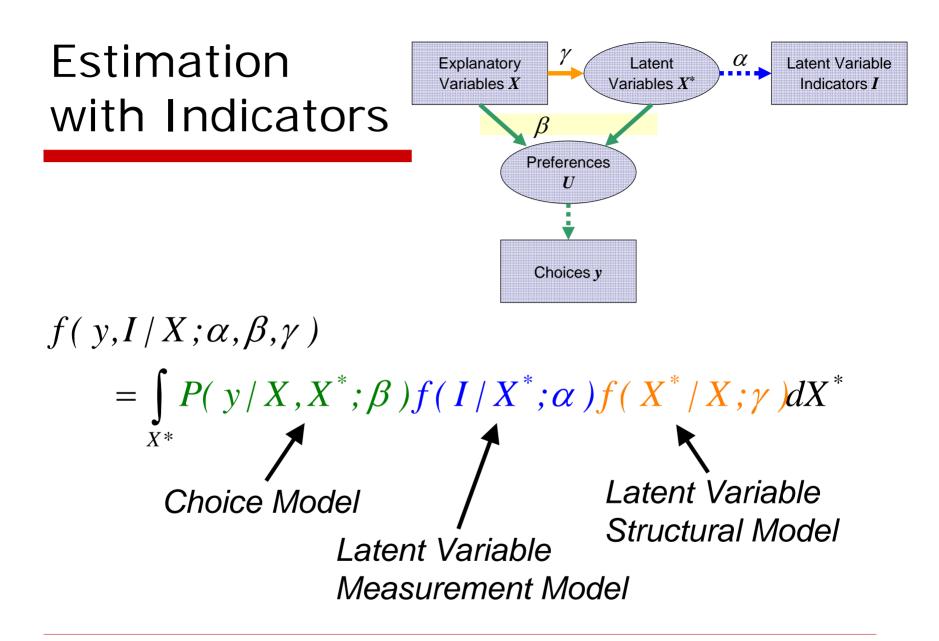
I don't mind being rushed at a connecting airport if this means I'll arrive at my final destination earlier

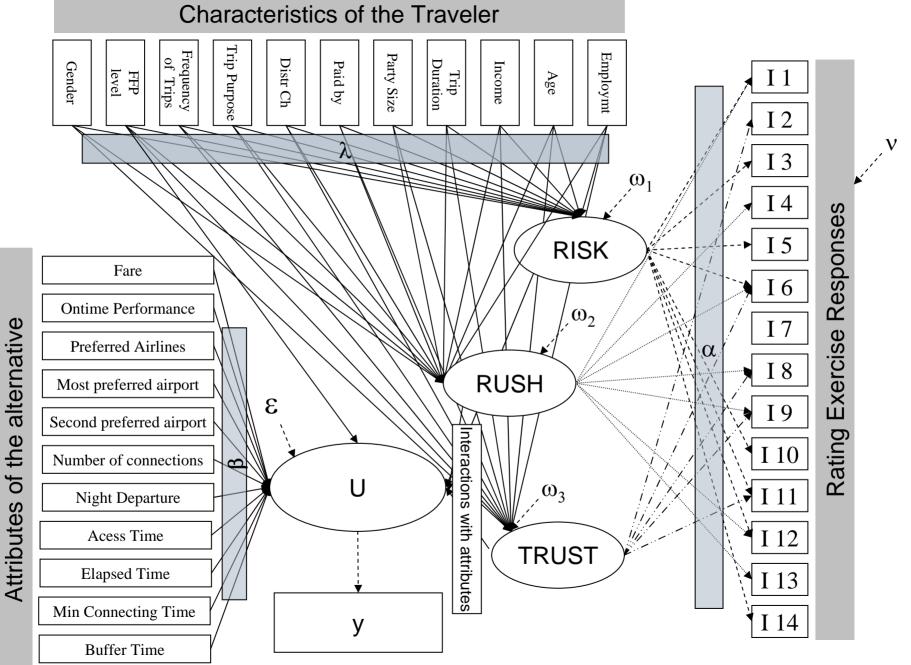

Airlines only sell connections that they expect passengers could make

I try to avoid short connections because of the risk of either me or my luggage missing the connecting flight

I enjoy time having extra time at airports

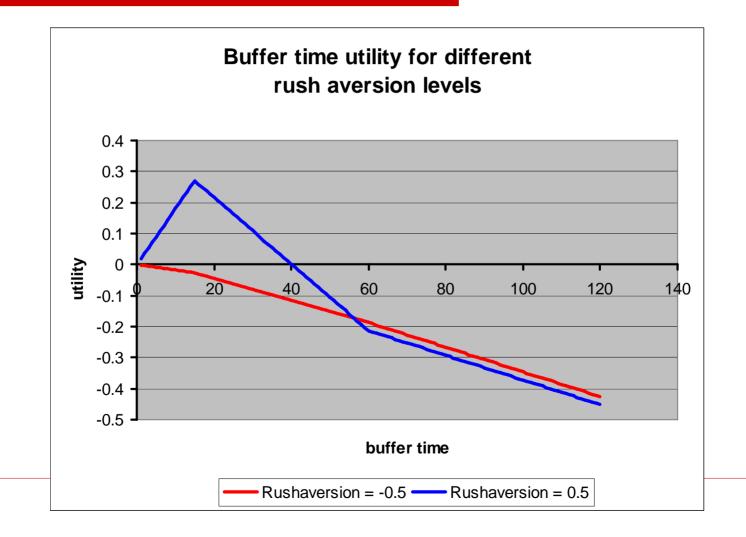
I make sure that the planned connecting time is adequate for me when booking a connecting itinerary


Using Psychometric Indicators



Formulation

- Standard choice model (no latent variables) $Prob(y|X;\beta)$
- Choice model with latent variables $Prob(y|X, X^*; \beta)$
- The latent variables are unknown

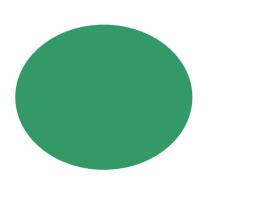

$$Prob(y|X;\beta,\gamma) = \int_{X^*} Prob(y|X,X^*;\beta)f(X^*|X;\gamma)dX^*$$

Estimated with program from Denis Bolduc

Influence of Rush Aversion on Perception of Buffer Time

29

Who Tends Towards Rush Aversion?

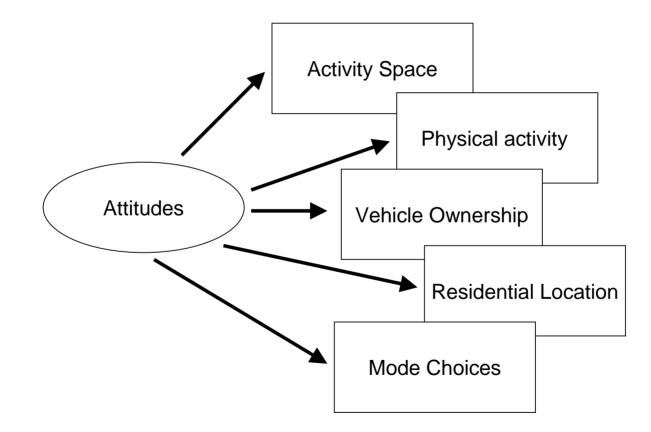

Demographics

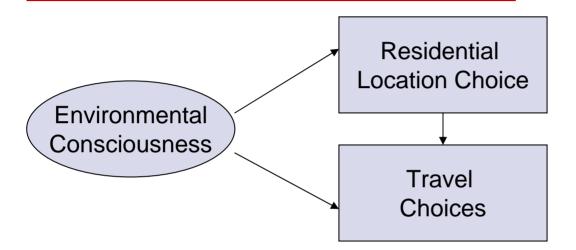
- Females
- Low/middle income
- Employed persons
- □ Trip characteristics
 - Business travelers
 - Checked bags
 - Short trips (< 3 nights)</p>
- Traveling history
 - Not missed flight in last 6 months
 - Not elite travelers

APPLICATION III

Environmentalism and Behavior

(with Mokhtarian and Schwanen)

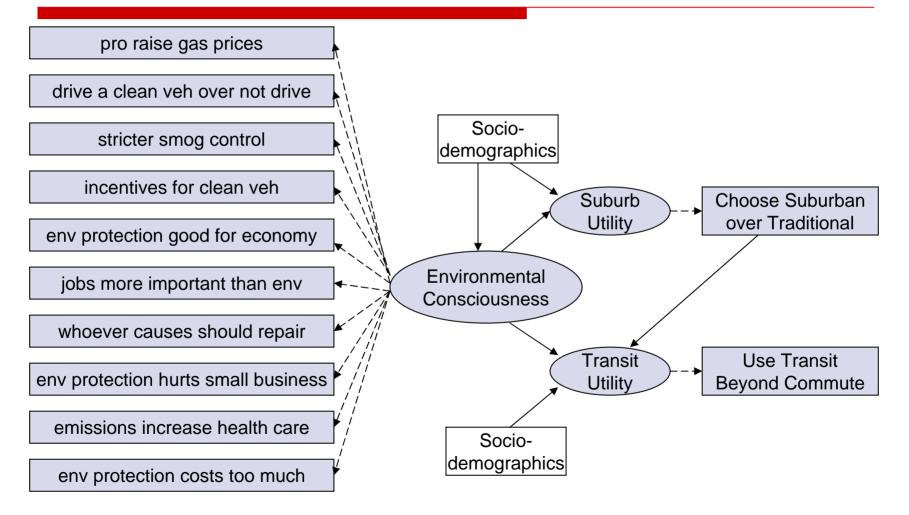




Hypothesis: Intrinsic Attitudes Influencing Related Behaviors

- 1993 household travel and activity survey from San Francisco Bay Area¹
- Multiple neighborhoods sampled
 - "Traditional" North San Francisco
 - "Suburban" Concord & San Jose

¹Sponsored by California Air Resources Board. Described in Kitamura, Laidet, Mokhtarian, Buckinger, Gianelli (1994). Using data processed by Michael Bagley.


Choices

- Residential Location
 - Suburban Neighborhood
 - Traditional Neighborhood
- Travel
 - Use of transit beyond commuting
 - No use of transit beyond commuting

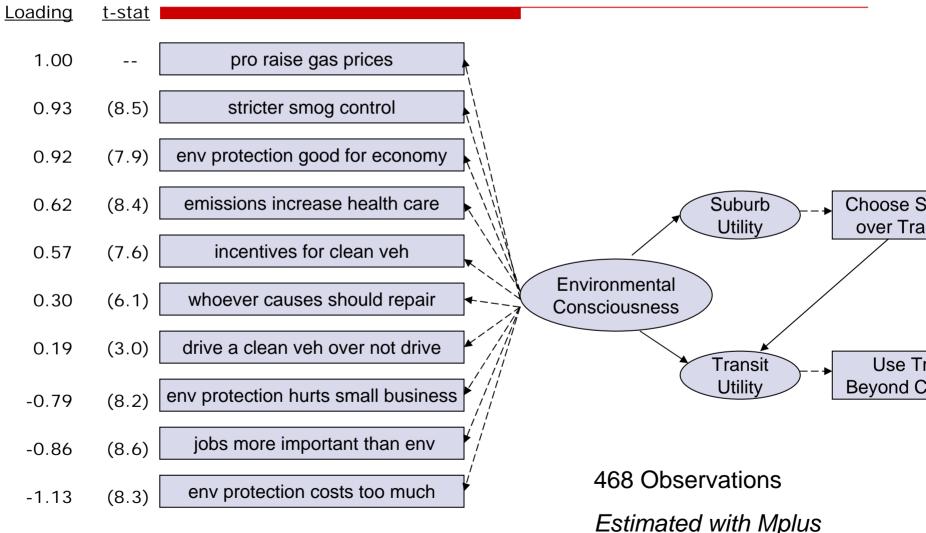
Indicators of Environmental Consciousness

- □ We should raise the price of gasoline to reduce congestion and air pollution.
- □ I would rather drive an electric or other clean-fuel vehicle than give up driving.
- □ Stricter vehicle smog control laws should be introduced and enforced.
- We should provide incentives to people who use electric or other clean-fuel vehicles
- Environmental protection is good for California's economy.
- People and jobs are more important than the environment.
- Whoever causes environmental damage should repair the damage.
- □ Environmentalism hurts minority and small businesses.
- □ Vehicle emissions increase the need for health care.
- Environmental protection costs too much.

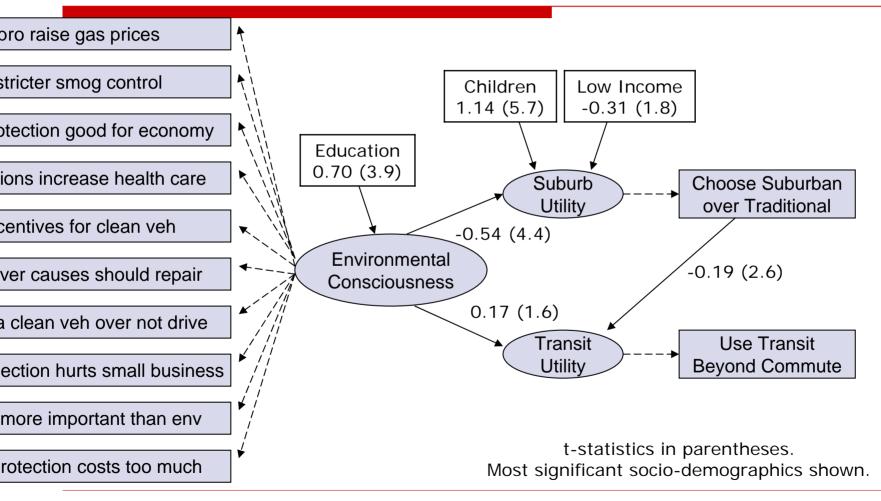
Model Framework

Formulation

$\square \text{ Residential location} - \text{binary logit}$ $U_{Suburb} = \beta_0 + \beta_1 \begin{pmatrix} \text{Environmental} \\ \text{Consciousness} \end{pmatrix} + \beta_X \begin{pmatrix} \text{Socio} - \\ \text{Demographics} \end{pmatrix} + \varepsilon_{Suburb}$ $U_{Traditional} = \varepsilon_{Traditional}$

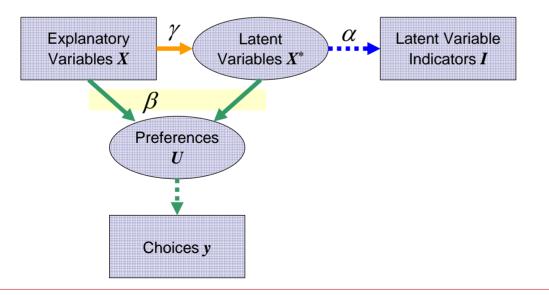

$\Box \text{ Transit use - binary logit} \\ U_{Transit} = \alpha_0 + \alpha_1 \begin{pmatrix} Environmental \\ Consciousness \end{pmatrix} + \alpha_2 (Suburb) + \alpha_x \begin{pmatrix} Socio - \\ Demographics \end{pmatrix} + \varepsilon_{Transit} \\ U_{NotTransit} = \varepsilon_{NotTransit}$

Environmentalism – set of linear eqs


Indicator_k =
$$\lambda_k \left(\frac{Environmental}{Conciousness} \right) + \varepsilon_k$$
 $k = 1, ..., 10$

 $\begin{pmatrix} Environmental \\ Conciousness \end{pmatrix} = \gamma \begin{pmatrix} Socio - \\ Demographics \end{pmatrix} + \varepsilon_{EC}$

Estimation Results (1)


Estimation Results (2)

CONCLUSION

Method

Integrated choice and latent variable models provide powerful & practical method to enrich behavioral representation in discrete choice models

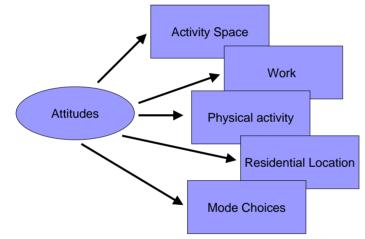
Comparison with State of the Art

- 1. Mixture Models
 - Sophisticated models of the covariance
 - □ Random parameters, error components
- 2. Behavioral Mixture Models
 - Model covariance structure via explicit latent variable constructs
 - Provide behavioral rational to mixtures

Fit? Temporal stability over time? Policy implications?

Applications Demonstrate More Intuitive Models

- 1. Lifestyle and Residential Choices
- 2. Risk, Rush and Airline Itinerary Choices



3. Role of Environmentalism

Future Directions

Multi-contextual modeling

Attitudinal trends

Validation with forecasts