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Abstract

In this paper we propose a general framework for pedestrian walking behavior, based on dis-
crete choice modeling. Two main behaviors are identified:unconstrainedand constrained.
The constrained patterns are further classified intoattractive interactionsandrepulsive interac-
tions. The formers are captured by aleader-followermodel while the latters through acollision
avoidancemodel. The spatial correlation between the alternatives istaken into account defining
a cross nested logit model. Quantitative analysis is performed by maximum likelihood estima-
tion on a real dataset of pedestrian trajectories, manuallytracked from video sequences.
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1 Introduction

Pedestrian behavior modeling is an important topic in different contexts. Architects are inter-
ested in understanding how individuals move into buildingsto find out optimality criteria for
space design. Transport engineers face the problem of integration of transportation facilities,
with particular emphasis on safety issues for pedestrians.Recent tragic events have increased
the interest for automatic video surveillance systems, able to monitoring pedestrian flows in
public spaces, throwing alarms when abnormal behaviors occur. Special emphasis has been
given to more specific evacuation scenarios, for obvious reasons. In this spirit, it is important to
define mathematical models based on specific (and context-dependent) behavioral assumptions,
tested by means of proper statistical methods. Data collection for pedestrian dynamics is par-
ticularly difficult and few models presented in the literature have been calibrated and validated
on real datasets.

In this work we refer to the general framework for pedestrianbehavior described by Hoogen-
doorn (in press) and Daamen (2004). Individuals in a certainenvironment make different de-
cisions, following a hierarchical scheme:strategical, tactical andoperational. Briefly, desti-
nations and activities are chosen at a strategical level; the order of the activity execution, the
activity area choice and route choice are performed at the tactical level while instantaneous de-
cisions are taken at the operational level. In this paper we address the problem of pedestrian
walking behavior, naturally identified by the operational level of the hierarchy just described.
We are interested in modeling the short range behavior innormalconditions, as a reaction to
the surrounding environment and to the presence of other individuals. With the term “normal”
we refer to non-evacuation and non-panic situations.

The objective in this paper is to provide a disaggregate, fully estimable behavioral model based
on discrete choice analysis, calibrated on real pedestriantrajectories manually tracked from
video sequences. We keep the same spatial discretization and choice set definitions introduced
in Antonini, Bierlaire, and Weber (to appear) and shortly reviewed later on in this section. Two
types of behavior are modeled here:unconstrainedandconstrained. The constrained patterns
are further classified intoattractive interactionsand repulsive interactions. This conceptual
framework is illustrated in Figure 1.
The unconstrained decisions are independent from the presence of other pedestrians and are
generated by subjective and/or unobserved factors. The first of these factors is represented
by the individual’s destination. It is assumed to be exogenous to the model and decided at
the strategical level. The second factor is represented by the tendency of people to keep their
current direction, minimizing their angular displacement. Finally, unconstrained accelerations
(with accelerations we mean both positive and negative speed variations) are dictated by the
individual desired speed. The implementation of these ideas is made through the three uncon-
strained patterns indicated in Figure 1.
The main contribution of this paper consists in a detailed analysis of the constrained behaviors.
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Figure 1: Conceptual framework for pedestrian walking behavior

We assume that behavioral constraints are induced by the interactions with the other individuals
in the scene. Repulsive interactions are modeled through thecollision avoidancepattern, which
is designed to capture the effects of possible collisions onthe current trajectory of the decision
maker. Attractive interactions are modeled through theleader-followerbehavior, that is the
tendency of people to follow another individual in a crowd, in order to benefit from the space
she is creating. Here, the existence of one or more leaders isassumed. They are represented by
those individuals in a neighbour of the decision maker and with similar moving directions and
speed, affecting her decisions.

Previous methods for pedestrian behavior modeling can be classified in two main categories:
microscopicandmacroscopicmodels. In the last years much more attention has been focussed
on microscopic modeling, where each pedestrian is modeled as an agent, individually. Ex-
amples of microscopic models are thesocial forcesmodel in Helbing and Molnár (1995) and
Helbing et al. (2002) where the authors use Newtonian mechanics with a continuous space rep-
resentation to model long-range interactions. Blue and Adler (2001) and Schadschneider (2002)
use cellular automata models, characterized by a static discretization of the space where each
cell in the grid is represented by a state variable. Another microscopic approach is based on
space syntax theory where people move through spaces following criteria of space visibility
and accessibility (see Penn and Turner, 2002) and minimizing angular paths (see Turner, 2001).
Finally, Borgers and Timmermans (1986), Whynes et al. (1996) and Dellaert et al. (1998) focus
on destination and route choice problems on network topologies. For a general literature review
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on pedestrian behavior modeling we refer the interested reader to Bierlaire et al. (2003).

In Antonini et al. (to appear) a discrete choice framework for pedestrian walking behavior is de-
fined, modeling the choice of “where to put the next step” in a microscopic context. Pedestrian
movements and interactions take place on the horizontal walking plane. The spatial resolution
depends on the current speed vector of the individuals. The geometrical elements of the space
model are illustrated in figure 2

Figure 2: The basic geometrical elements of the space structure

The current position of the decision makern is pn, her current speedvn ∈ IR, her current
direction isdn ∈ IR2 (normalized, so that‖dn‖ = 1) and her visual angle isθn. The region
of interest is situated in front of the pedestrian, ideally overlapping with her visual field, and is
schematically represented by the shaded area in figure 2. An adaptive discretization is obtained
assuming three speed regimes, where the individuals can accelerate and decelerate up to a cer-
tain factor or they can keep their current speed constant. A choice between 11 radial directions
is allowed, as illustrated in Figure 3.
A choice set of 33 alternatives is generated where each alternative corresponds to a speed regime
v and a radial directiond. They are numbered usingna = 11s + r wherena is the number of
the alternative,s andr are, respectively, the speed regime and the direction indexes, as reported
in Figure 3. Each alternative is identified by the physical center of the corresponding cell in the
spatial discretizationcvd, that is

cvd = pn + vtd,

wheret is the time step. The choice set varies with direction and speed therefore the distance
between an alternative’s center and other pedestrians willvary with the speed of the decision
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Figure 3: The spatial discretization is generated assumingthree speed regimes and 11 radial
directions. The external numbers in the right-hand figure represent the angular amplitudes of
the radial cones, in degrees. The internal numbers (r) refer to the enumeration of directions
while s in the left-hand figure represents the indexes used for speedregimes

maker. As a consequence, differences in individual speeds are naturally mapped into differ-
ences in their relative interactions.

The concept of leader-follower has been inspired by previous car following models in transport
engineering (Ahmed, 1999; Herman and Rothery, 1965; Lee, 1966; Newell, 1961, among oth-
ers). The main idea in these models is that two vehicles are involved in a car following situation
when a subject vehicle follows a leader, normally represented by the vehicle in front, reacting
to its actions. In general, a sensitivity-stimulus framework is adopted. According to this frame-
work a driver reacts to stimuli from the environment, where the stimulus is normally chosen as
the leader relative speed. Different models differ in the specification of the sensitivity term. This
modeling idea is extended here and adapted to the more complex case of pedestrian behavior.
We want to stress the fact that in driver behavior modeling a distinction between acceleration
behavior and direction change (lane change) behavior is almost natural (see Toledo, 2003), be-
ing imposed by the transport facility itself. On the other hand, the pedestrian case is more
complex, the movements being purely two-dimensional on thewalking plane, where acceler-
ation and direction changes are not easily separable. The collision avoidance pattern and the
constrained behaviors in general are also inspired by studies in human sciences and psychology,
leading to the concept ofpersonal space(see Horowitz et al., 1964; Dosey and Meisels, 1969;
Sommer, 1969). Personal space is a protective mechanism founded on the ability of the individ-
ual to perceive signals from one’s physical and social environment. Its function is to create the
spacing patterns that regulate distances between individuals and on which individual behaviors
are based (Webb and Weber, 2003). Helbing and Molnár (1995) in their social forces model
use the term “territorial effect”. Several studies in psychology and sociology show how indi-
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vidual characteristics influence the perception of the space and interpersonal distance. Brady
and Walker (1978) found for example that anxiety states are positively correlated with inter-
personal distance. Similarly, Dosey and Meisels (1969) found that individuals establish greater
distances in high-stress conditions. Hartnett et al. (1974) found that male and female individuals
approached short individuals more closely than tall individuals. Other studies (Phillips, 1979;
Sanders, 1976) indicate that the other person’s body size influences space.

2 Behavioral framework and assumptions

Individuals walk on a 2D plane and any kind of behavior influencing their movement results
in two kind of observations: changes in direction and changes in speed, i.e. accelerations.
This specification is important to perform walking behavioranalysis, and hypotheses have to be
made concerning the unobserved factors in the model and how they are related to the observed
data. Figure 1 summarizes the set of assumptions we want to test. Five behavioral patterns are
defined. In a discrete choice context, they have to be considered as competitive terms entering
the utility functions of each alternative, as reported in Equation 1. The utilities describe the
space around the decision maker and under the rational behavior assumption the individual
chooses that location (alternative) with the maximum utility. In the following, we discuss the
different patterns and the associated assumptions in more details.

Unconstrained patterns

The unconstrained patterns are identified by those behaviors that are independent from the pres-
ence of other pedestrians. We assume that three factors influence the individual behavior.

• Toward destination The first factor is represented by the choice of the final destination
which can be a specific area where the individual wants to perform an activity in her
schedule. To be coherent with the general framework introduced in Section 1, we assume
that the destination choice is performed at the strategicallevel in the hierarchical decision
process. Such a higher level choice is naturally reflected onthe short term behavior as the
tendency of individuals to choose, for the next step, a spatial location that minimize both
the angular displacement and the distance to the destination.

• Keep direction The second factor influencing the unconstrained behavior isrepresented
by the tendency of people to avoid frequent changings in direction. People choose their
next position in order to minimize the angular displacementfrom their current movement
direction. In addition to the behavioral motivation of thisfactor, it also plays a smoothing
role in the model, avoiding drastic changes of direction from one time period to the next.

• Free flow acceleration In free flow conditions the behavior of the individual is driven by
her desired speed. The acceleration is then a function of thedifference between current
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speed and desired speed. However, this factor is an unobserved individual characteristic
and it can not be introduced explicitly in the model. As a consequence, we assume that the
attractiveness of an individual for an acceleration is dependent on her current speed value.
Increasing speed values correspond to decreasing attractiveness for further accelerations.
A similar idea is applied to decelerations (see Antonini et al., to appear).

Constrained patterns

Constrained behaviors are induced by the presence of other individuals in the scene and cap-
ture the pedestrian-pedestrian interactions. We identifyattractive and repulsive interactions,
described by the following patterns.

• Leader-follower We assume that the decision maker is influenced by leaders. Inour
spatial representation 11 radial cones partition the choice set (see Figure 3). In each of
these directions a possible leader can be identified among a set of potential leaders. A
potential leader is an individual which is inside a certain region of interest,not so farfrom
the decision maker and having a moving directionclose enoughto the direction of the
radial cone where she is. Once identified, the leader inducesan attractive interaction on
the decision maker. Similarly to car following models, a leader acceleration corresponds
to a decision maker acceleration.

• Collision avoidance This pattern captures the effects of possible collisions onthe deci-
sion maker trajectory. For each direction in the choice set,a collider is identified among
a set ofpotential colliders. Another individual is selected as a potential collider if she is
inside a certain region of interest,not so farfrom the decision maker and walking against
the decision maker herself. This pattern is associated withrepulsive interactions in the
obvious sense that pedestrians change their current direction to avoid collisions with other
individuals.

3 The model

Following the framework proposed in Figure 1 we report here the systematic utility as perceived
by individualn for the alternative identified by the speed regimev and directiond:
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Vvdn = βdirdirdn +
}

keep direction

βddistddistvdn +

βddirddirdn +

}

toward destination

βaccIv,acc(vn/vmax)
λacc +

βdecIv,dec(vn/vmax)
λdec +

}

free flow acceleration

Iv,accI
L
accα

L
accD

ρL
acc

L ∆v
γL

acc

L ∆θ
δL
acc

L +

Iv,decI
L
decα

L
decD

ρL
dec

L ∆v
γL

dec

L ∆θ
δL
dec

L +

}

leader follower

Id,dn
ICαCe−ρCDC∆vγC

C ∆θδC

C

}

collision avoidance

(1)

where all theβ parameters as well asλacc, λdec, αL
acc, ρL

acc, γL
acc, δL

acc, αL
dec, ρL

dec, γL
dec, δL

dec, αC ,
ρC , γC, δC are unknown and have to be estimated. Note that this specification is the result of an
intensive modeling process, where many different specifications have been tested. We explain
in the following the different terms of the utilities.

• Keep direction This behavior is captured by the term

βdirdirdn

where the variabledirdn is defined as the angle in degrees between directiond and direc-
tion dn, corresponding to the central cone, as shown in figure 4.

Figure 4: The elements capturing thekeep directionandtoward destinationbehaviors
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• Toward destination This behavior is captured by the term

βddistddistvdn + βddirddirdn

where the variableddistvdn is defined as the distance in meters between the destination
and the center of the alternativeCvdn, while ddirdn is defined as the angle in degrees be-
tween the destination and the alternative’s directiond, as shown in figure 4.

• Free flow accelerationWe define two parameters for the free flow acceleration (deceler-
ation) terms,̃βacc andβ̃dec:

β̃acc = Iv,accβacc(vn/vmax)
λacc ,

β̃dec = Iv,decβdec(vn/vmax)
λdec

The attributeIv,acc is 1 if v = vacc, that is, if the alternative corresponds to an acceleration
and 0 otherwise.Iv,dec is similarly defined. The two parameters are non-linear functions of
the current speed of the decision-makervn. βacc is the value of the parameter associated
with vn = vmax andλacc is the elasticity of the parameter with respect to speed.vmax

represents the maximum value of the observed speed module.

• Leader-follower The leader-follower model captures the attractive interactions among
pedestrians and is given by the following terms

Iv,accI
L
accα

L
accD

ρL
acc

L ∆v
γL

acc

L ∆θ
δL
acc

L + Iv,decI
L
decα

L
decD

ρL
dec

L ∆v
γL

dec

L ∆θ
δL
dec

L .

It is described by asensitivity/stimulusframework. For a given leader, the sensitivity is
described by

sensitivity = f(DL) = αL
g D

ρL
g

L (2)

whereDL represents the distance between the decision maker and the leader. The pa-
rametersαL

g andρL
g have to be estimated andg = {acc, dec} indicates when the leader

is accelerating with respect to the decision maker. The decision maker reacts to stim-
uli coming from the chosen leader. We model the stimulus as a function of the leader’s
relative speed∆vL and the leader’s relative direction∆θL as follows:

stimulus = g(∆vL, ∆θL) = ∆v
γL

g

L ∆θ
δL
g

L (3)

with ∆vL = |vL − vn|, wherevL andvn are the leader’s speed module and the decision
maker’s speed module, respectively. The variable∆θL = θL − θd, whereθL represents

10



Swiss Transport Research Conference March 15-17, 2006

the leader’s movement direction andθd is the angle characterizing directiond, as shown
in Figure 5(a). The parametersγL

g andδL
g have to be estimated. A leader acceleration

induces a decision maker’s acceleration. A substantially different movement direction in
the leader reduces the influence of the latter on the decisionmaker.

(a) (b)

Figure 5: Figure 5(a) shows the leader’s movement direction, θL, the direction of the radial cone
where the leader lies,θd, and her distance from the decision maker,DL, used in the definitions
of both the sensitivity and the stimulus terms. Figure 5(b) illustrates how many potential leaders
are considered for each direction and how only the nearest one is chosen as leader for a specific
direction (darker circles)

The leader for each direction is chosen considering severalpotential leaders, as shown
in Figure 5(b). An individualk is defined as a potential leader based on the following
indicator functionIk

g :

Ik
g =















1, if dl ≤ dk ≤ dr,
and0 < Dk ≤ Dth,
and0 < |∆θk| ≤ ∆θth

0, otherwise.

wheredl anddr represent the bounding left and right directions of the choice set (defining
the region of interest) whiledk is the direction identifying the pedestriank position.Dk

is the distance between pedestriank and the decision maker,∆θk = θk − θd is the differ-
ence between the movement direction of pedestriank (θk) and the angle characterizing
directiond, i.e. the direction identifying the radial cone where individualk lies (θd ). The
two thresholdsDth and∆θth are fixed at the valuesDth = 5Dmax, whereDmax is the
radius of the choice set, and∆θth = 10 degrees. We assume an implicitleader choice
process, executed by the decision maker herself and modelled choosing as leader for each
direction the potential leader at the minimum distanceDL = mink∈K(Dk), illustrated in
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Figure 5(b) by the darker circles. Finally, the indicator functionsIv,acc andIv,dec discrim-
inate between accelerated and decelerated alternatives, as for the free flow acceleration
model.

• Collision avoidanceThe collision avoidance model captures the repulsive interactions
among pedestrians and is given by the following term

Id,dn
ICαCe−ρCDC∆vγC

C ∆θδC

C .

The scenario is similar to the leader follower. We keep the sensitivity/stimulus frame-
work, where the sensitivity function is defined as

sensitivity= f(DC) = αCe−ρCDC (4)

where the parametersαC andρC have to be estimated andDC is the distance between the
collider position and the center of the alternative, as shown in Figure 6(a). We choose the
exponential to keep the same functional form as that used in Antonini et al. (to appear).
The decision maker reacts to stimuli coming from the collider. We model the stimulus as
a function of two variables:

stimulus= f(∆vC , ∆θC) = ∆vγC

C ∆θδC

C (5)

with ∆θC = θC −θdn
, whereθC is the collider movement direction andθdn

is the decision
maker movement direction, and∆vC = vC + vn, wherevC is the collider’s speed module
and vn is the decision maker’s speed module. The parametersγC and δC have to be
estimated. Individuals walking against the decision makerat higher speeds and in more
frontal directions (higher∆θC) generate stronger reactions, weighted by the sensitivity
function.

The collider for each direction is chosen considering several potential colliders, as shown
in Figure 6(b). An individualk is defined as a potential collider based on the following
indicator function

Ik
C =















1, if dl ≤ dk ≤ dr,
and0 < Dk ≤ D′

th,
andπ

2
≤ |∆θk| ≤ π

0, otherwise.

wheredl, dr anddk are the same as those defined for the leader follower model.Dk is
now the distance between individualk and the center of the alternative,∆θk = θk − θdn

is the difference between the movement direction of pedestriank (θk) and the movement
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(a) (b)

Figure 6: Figure 6(a) shows the collider and decision maker movement directions,θC andθdn

respectively.DC represents here the distance of the collider with the centerof the alternative.
Figure 6(b) shows many potential colliders taken into account for each direction

direction of the decision maker,θdn
. The value of the distance threshold is now fixed

to D′

th = 10Dmax. We use a larger value for such a threshold compared to the leader-
follower model, assuming the collision avoidance behaviorbeing a longer range inter-
action, happening also at a lower density level. We assume animplicit collider choice
process, executed by the decision maker herself. Among the set ofKd potential colliders
for directiond, the collider is chosen as that individual having∆θC = maxk∈Kd

|∆θk|.
The related indicator function isIC . Finally, the collision avoidance term is included in
the utility functions of all the alternatives, with the exception of the central ones. So,
the indicator functionId,dn

is equal to 1 for those alternatives that are not in the current
direction (d 6= dn), 0 otherwise.

The random term

We keep the cross nested logit (CNL) specification used in Antonini et al. (to appear). Such
a model allows flexible correlation structures in the choiceset, keeping a closed form solu-
tion. The CNL being a Generalized Extreme Value (GEV) model (see McFadden, 1978), the
probability of choosing alternativei within the choice setC is:

P (i|C) =
yiGi(y1, ..., yJ)

µG(y1, ..., yJ)
(6)

whereJ is the number of alternatives inC, yj = eVj with Vj the systematic part of the utility
described in Section 3 andG is the following generative function:
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G(y1, ..., yJ) =
M
∑

m=1

(

∑

j∈C

(α
1/µ
jm yj)

µm

)
µ

µm

(7)

whereM is the number of nests,αjm ≥ 0, ∀j, m,
∑M

m=1
αjm > 0, ∀j, µ > 0, µm > 0, ∀m

andµ ≤ µm, ∀m. This formulation leads to the following expression for thechoice probability
formula, usingyi = eVi :

P (i|C) =

M
∑

m=1

(

∑

j∈C α
µm/µ
jm yµm

j

)
µ

µm

∑M
n=1

(

∑

j∈C α
µn/µ
jn yµn

j

)
µ

µn

α
µm/µ
im yµm

i
∑

j∈C α
µm/µ
jm yµm

j

(8)

We assume a correlation structure depending on the speed anddirection and we identify five
nests:accelerated, constant speed, decelerated, centralandnot central. This correlation struc-
ture is illustrated in figure 7. Given the lack of any a priori information, we fix the degrees of
membership to the different nests (αjm) to the constant value 0.5.

Figure 7:left: Nesting based on direction right: Nesting based on speed

4 Data

The dataset used to estimate the model consists of pedestrian trajectories manually tracked
from video sequences. We have pooled together two differentdatasets, collected separately in
Switzerland and Japan.

The Swiss dataset

This part of the dataset consists of 36 pedestrian trajectories, manually tracked from a digital
video sequence. The scene has been recorded out of the Flon metro station in Lausanne, in
2002, for a total of 1675 observed positions. Each position refers to a reference system on the
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(a) Japanese scenario (b) Swiss scenario

Figure 8: Images from the two scenarios used to collect the dataset.

walking plane, after a calibration of the camera. For a detailed description of this first dataset
we refer the reader to Antonini et al. (to appear).

The Japanese dataset

This dataset has been collected in Sendai, Japan, on August 2000 (see Teknomo et al., 2000;
Teknomo, 2002). The video sequence has been recorded from the 6th floor of the JTB parking
building (around 19 meters height), situated at a large pedestrian crossing point. Two main
pedestrian flows cross the street, giving rise to a large number of interactions. In this context,
190 pedestrian trajectories have been manually tracked, with a time step of 1 second, for a total
number of 10200 position observations. The collected data contains the pedestrian identifier,
the time step and the image coordinates. The mapping betweenthe image plane and the walk-
ing plane is approximated by a 2D-affine transformation, whose parameters are learnt by linear
regression. The reference system on the walking plane has the origin arbitrarily placed on the
bottom left corner of the zebra crossing. Thex axis represents the width of the crossing while
they axis is the crossing length.

Two frames from the two video sequences are reported in Figure 8. In Figure 9 we report
the frequency of the revealed choices as observed in the two datasets. The three peaks in the
distributions arise on the central alternatives (6, 17, 28), as expected.
We report in Figure 10 two examples of trajectories and in Figure 11(a) and Figure 11(b) the
related speed-time graphs. In Figure 12 we report the speed histogram and in Table 1 the speed
statistics.
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(a) Japanese dataset (b) Swiss dataset

Figure 9: Revealed choices histograms.

Table 1: Speed statistics

Mean 0.668242
Standard Error 0.003547

Median 0.58023
Mode 0

Standard Deviation 0.35826
Range 3.939786

Minimum 0
Maximum 3.939786
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Figure 10: Examples of two manually tracked trajectories

(a) (b)

Figure 11: Speed-time graphs for the same two pedestrians

Data post-processing

The original Swiss dataset has been post-processed in orderto generate the input data for the
estimation process. At each step, the observed choice made by the current decision maker has
been measured 3 steps ahead in time, i.e. 0.9 seconds. As a consequence, the last four positions
of each trajectory are not used. Moreover, in both the datasets those observations corresponding
to a static pedestrian (vn = 0) and those corresponding to an observed choice out of the choice
set have been discarded.

We report in Table 2 and Table 3 the averaged values of the leader and collider availabilities

17



Swiss Transport Research Conference March 15-17, 2006

Figure 12: Speed histogram

(represented by the two indicator functionsIL
g andIC defined above) defined as follows:

ĪL
g =

1

NS

NS
∑

n=1

IL
g

ĪC =
1

NJ

NJ
∑

n=1

IC (9)

whereNS andNJ are the two sample sizes.

5 Results

We report in Table 4 the estimation results. The parameters have been estimated using the
Biogeme package (Bierlaire, 2003). It is a freeware packagefor the estimation of a wide range
of random utility models.
We first shortly comment the results for those parameters related to the unconstrained models
(toward destination, keep direction and free flow acceleration). This part of the model specifica-
tion is similar to that presented in Antonini et al. (to appear). Thetoward destinationcoefficients
βddir andβddist have been estimated significantly different from zero. The assumption that desti-
nation distance and direction capture two different effects is supported by the data, being related
to the 2D nature of the pedestrian movements. Their signs arenegative, as expected, reflecting
the tendency of individuals to move directly towards their final destination, through the shortest
path. The destination being exogenous to the model, we interpret this behavior as the short
range projection of higher level decisions, made at the tactical level, such as (intermediate) des-
tination choice and/or activity area choice. Thekeep directionparameter,βdir, is significant and
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Table 2: Averaged leader and collider availabilities for the Swiss dataset

direction ĪL
g ĪC

accelerated decelerated

1 0.004 0.004 0.145
2 0.006 0.013 0.117
3 0.004 0.014 0.148
4 0.002 0.017 0.142
5 0.003 0.021 0.150
6 0.001 0.012 0.152
7 0.001 0.015 0.116
8 0.004 0.016 0.111
9 0.002 0.016 0.136
10 0.002 0.006 0.104
11 0.0007 0.002 0.069

Table 3: Averaged leader and collider availabilities for the Japanese dataset

direction leader availability collider availability
accelerated decelerated

1 0.07 0.11 0.45
2 0.09 0.13 0.47
3 0.07 0.12 0.47
4 0.06 0.10 0.44
5 0.09 0.14 0.45
6 0.10 0.16 0.44
7 0.08 0.13 0.45
8 0.05 0.10 0.44
9 0.05 0.10 0.48
10 0.05 0.12 0.49
11 0.05 0.10 0.47
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has a negative sign, as expected. It captures the tendency ofpeople to minimize the angular dis-
placement along their trajectories. Finally, 3 out of 4 of the free flow accelerationparameters,
namelyβacc, βdec andλacc have been estimated significantly different from zero. The negative
signs forβacc andβdec indicate the tendency of pedestrians to perceive as a cost variations in
speed, both positive and negative. A positive value for the acceleration elasticityλacc indicates
that the actractiveness of an acceleration reduces with increases in speed, as expected.
We now comment on the constrained models’ parameters. For the leader-followerbehavior we
note that in the case of an accelerated leader, 3 out of 4 parameters have been estimated signif-
icantly different from zero. The positive value for theαL

acc multiplicative coefficient indicates
that when a leader is present (or several potential leaders are present, so that the closest to the
decision maker is considered), a leader’s acceleration induces a corresponding acceleration on
the decision maker. The negative sign for the distance exponential coefficient,ρL

acc, indicates
that the influence of the leader on the decision maker acceleration behavior reduces when their
relative distance increases, as expected. The positive sign for the speed exponential coefficient,
γL

acc, shows that the utility of an acceleration increases with higher values of the relative leader
speed, as expected. The same interpretation is given for theparameters corresponding to a de-
celerating leader. In this case we keep in the model also the exponential coefficient related to
the direction,δL

dec, with t-test statistics equal to 1.642. Its negative sign is coherent with the
leader-follower behavior. It reflects the fact that in thosecases where the leader’s relative di-
rection is higher, the influence of the leader on the decisionmaker is lower, resulting in a lower
utility value for the decelerated alternatives.
For the estimation of thecollision avoidanceparameters, we fix the exponential coefficient re-
lated to the collider relative direction,δC , equal to 1 for numerical convenience. The other
three free parameters have been estimated significantly different from zero. The multiplicative
coefficientαC is negative, as expected. It indicates that those directions more likely to lead
to a collision have a lower utility with respect to the central (current) direction. The latter is
taken as the reference one for normalization purposes. The exponential coefficient related to
the distance between the collider and the alternative,ρC , has a negative sign. It shows the fact
that a more distant collider has a less negative impact on thealternative utility. Finally, the
exponential coefficient related to the relative speed,γC , is positive, as expected. It captures the
fact that faster colliders have a more negative impact on theutilities than slower individuals.
The correlation structure is captured by the cross nested specification. Three nest parameters
have been fixed to 1 while two are left free in the model, capturing the correlation between the
constant speed and the not central alternatives. They have been estimated significantly different
from 1.
We finally comment on the heterogeneity in the dataset. We estimate the scale factorµscale for
the Swiss data, which captures the variance of the associated error term.

We report in the following some graphics illustrating the marginal effects of the different vari-
ables for the constrained models. In Figure 13(a) and Figure13(b) the effects of a stimulus vari-
ation (due to changes in the relative leader direction and speed) are shown. Figure 13(a) shows
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an accentuated variation in the leader acceleration term which decays quite quickly when vary-
ing its relative direction. Figure 13(b) shows the acceleration term (for a fixed decision maker
speed equal to 3 m/s) when the leader speed is free to vary. As expected, higher acceleration
values correspond to higher relative speed values, with a zero acceleration when the leader
speed is equal to the decision maker speed, as expected. In Figure 14 the effect of variations
in the sensitivity function (varying the leader distance) are reported. As expected, lower accel-
eration terms correspond to higher relative distance values. Finally, we report in Figure 15(a),
Figure 15(b) and Figure 16 an example of the probability of a central deceleration (alternative
28) when varying the relative (decelerating) leader direction, speed and distance, respectively.
Similarly, in Figure 17(a) and Figure 17(b) we report the effects of variations in the stimulus
term for the collision avoidance model. Figure 17(a) shows how for colliders coming from more
frontal directions with respect to the decision maker direction (increasing relative direction), the
collision term is reduced, reducing the alternative’s utility. Figure 17(b) shows how the collision
term reduces for higher relative collider speed values. In Figure 18 the effects of changes in the
sensitivity term are reported. It shows how farther colliders induced a lower negative effect on
the utility, i.e. the collision term increases. Finally, wereport in Figure 19(a), Figure 19(b) and
Figure 20 an example of the probability of a central acceleration (alternative 6) when varying
the relative collider direction, speed and distance, respectively.
We conclude this section underlying the fact that it seems natural that individual characteristics
such as age, sex, weight, height among others influence the spatial perception, interpersonal dis-
tance and human-human interactions. However, given the available data (trajectories) it is not
possible to take into account such characteristics. The setting of controlled experimental condi-
tions (Hoogendoorn (in press) and Daamen (2004)) is necessary to allow for such unobserved
heterogeneity to be taken into account.

6 Conclusions

In this paper we propose a general framework based on discrete choice modeling for pedestrian
walking behavior. The short range walking behavior of individuals is modeled, identifying two
main patterns: constrained and unconstrained. The main contribution of this paper is on the
former. The constraints are generated by the interactions with other individuals. We identify
attractive and repulsive interactions, captured respectively through a leader-follower and a col-
lision avoidance models. Inspiration is taken from driver behaviors in transportation science,
and ideas such as the car following model and lane changing models have been reviewed and
re-adapted to the more complex pedestrian case. The difficulties to collect pedestrian data as
well as the limited information conveyed by pure dynamic datasets limit the possibilities in the
model specification step. Important individual effects cannot be captured without the support
of socio-economic characteristics. However, the recent development of pedestrian laboratories,
where the set up of controlled experimental conditions is possible, represents an important step
in this direction. In this spirit, important future research can be done, integrating for example
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the spatial layout as an important cause for pedestrian movements as well as latent variable
models capturing the effect of individual characteristics.
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Table 4:CNL estimation results for the pooled dataset

Variable Coefficient t test 0 t test 1
name estimate
βddir -0.061 -19.066
βddist -1.614 -1.9749
βdir -0.027 -11.342
βacc -19.822 -5.847
βdec -2.069 -2.651
λacc 0.969 26.880
αL

acc 4.883 3.368
ρL

acc -0.657 -3.034
γL

acc 0.869 9.877
αL

dec 4.061 6.278
ρL

dec -0.481 -4.280
γL

dec 0.524 9.089
δL
dec -0.892 -1.642
αC -0.0058 -4.639
ρC -0.313 6.748
γC 0.781 3.318

µconst 1.597 32.413 12.119
µnot_central 1.487 15.765 5.160

µscale 0.591 - -8.565
Sample size = 10783
Number of estimated parameters = 19
Init log-likelihood = -78558.3
Final log-likelihood = -22572.7
Likelihood ratio test = 30260.3
ρ̄2 = 0.4007
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(a) Marginal effect of the relative leader direction

(b) Marginal effect of the relative leader speed

Figure 13: Effects of variations in the leader stimulus parameters
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Figure 14: Effects of variations in the leader sensitivity
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(a) Probability of central deceleration as a function of therelative (decelerating) leader
direction

(b) Probability of central deceleration as a function of therelative (decelerating) leader
speed

Figure 15: Variations in probability as a function of the leader parameters
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Figure 16: Probability of central deceleration as a function of the relative (decelerating) leader
distance
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(a) Marginal effect of the relative collider direction

(b) Marginal effect of the relative collider speed

Figure 17: Effects of variations in the collider stimulus parameters
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Figure 18: Effects of variations in the collider sensitivity

31



Swiss Transport Research Conference March 15-17, 2006

(a) Probability of central acceleration as a function of therelative collider direction

(b) Probability of central acceleration as a function of therelative collider speed

Figure 19: Variations in probability as a function of the collider parameters
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Figure 20: Probability of central acceleration as a function of the relative collider distance
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