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Abstract

The cross-nested logit (CNL) model has been mentioned for the �rst

time by Vovsha (1997) in the context of a mode choice survey in Israel.

Actually, it is almost identical to the Ordered GEV model proposed by

Small (1987). This model, member of the GEV family (McFadden, 1978),

is appealing for its ability to capture a wide variety of correlation struc-

tures. Papola (2000) has shown that a speci�c CNL model can be derived

for any given homoschedastic variance-covariance matrix. Therefore, the

CNL model, with a closed form formulation derived from the GEV model,

becomes a serious competitor for the probit model.

In this paper, we develop on the general formulation of the Cross Nested

Logit model proposed by Ben-Akiva and Bierlaire (1999). We show that

the formulations by Small (1987), Vovsha (1997) and Papola (2000) are

particular cases of our general formulation. We also provide some new

insights in the CNL model based on theoretical analysis and empirical

tests.

We show that one of the conditions imposed by Small (1987), Vovsha

(1997) and Papola (2000) is not necessary for the CNL model to be consis-

tent with random utility theory. This condition imposes that the sum of

the parameters capturing the degree of membership of an alternative to a

nest is equal to one. We prove that the CNL model is a GEV model without

using that condition. It is actually a normalization condition, important

for parameters identi�cation, but not for model formulation. Finally, we

use a simplistic model to illustrate the role of the normalization condition.

We propose a variant of the condition proposed in the literature which is

slightly more general.

Keywords: logit model, cross-nested model, GEV model, random utility,

transportation demand
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1 Introduction

Discrete choice models play a major role in many �elds involving a human di-

mension, including transportation demand analysis (the recent Nobel prize to

D. McFadden is a perfect illustration of that statement). Their nice and strong

theoretical properties, and their exibility to capture various situations, provide

a vast topic of interest for both researchers and practitioners, that has (by far)

not been totally exploited yet. The particular structure of transportation related

choice situations are not always fully consistent with the underlying modeling

theory (Ben-Akiva and Bierlaire, 1999), requiring to enhance and adapt existing

models. The theory on GEV models have been introduced by McFadden (1978).

It provides a tremendous potential, as it de�nes a whole family of models, con-

sistent with random utility theory. It appears that only a few members of this

family have been exploited so far. Among them, the cross-nested logit (CNL)

model has been used by Vovsha (1997) in the context of a mode choice survey in

Israel. Actually, Vovsha's model is almost identical to the Ordered GEV model

proposed by Small (1987). This model is appealing for its ability to capture a

wide variety of correlation structures. Papola (2000) has shown that a speci�c

CNL model can be obtained for any given homoschedastic variance-covariance

matrix. Therefore, the CNL model, with a closed form formulation derived from

the GEV model, becomes a serious competitor for the probit model. It has

been shown to be speci�cally appropriate for route choice applications (Vovsha

and Bekhor, 1998), where topological correlations cannot be captured correctly

by the multinomial and the nested logit models. Unfortunately, no satisfactory

procedure has been proposed for the estimation of the model parameters.
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The remaining of this section introduces the GEV model and presents various

formulations of the Cross-Nested Logit model. In Section 2, we analyze the most

general formulation. We prove that it is consistent with the GEV model family.

1.1 The GEV model

The Generalized Extreme Value (GEV) model has been derived from the random

utility model by McFadden (1978). This general model consists of a large family

of models that include the Multinomial Logit and the Nested Logit models. The

probability of choosing alternative i within the choice set C of a given choice

maker is

P (ijC) =
yi

@G
@yi

(y1; : : : ; yJ)

�G(y1; : : : ; yJ)
(1)

where J is the number of available alternatives, yi = eVi , Vi is the deterministic

part of the utility function associated to alternative i, and G is a non-negative

di�erentiable function de�ned on RJ
+ with the following properties:

1. G is homogeneous of degree � > 0, that is G(�y) = ��G(y),

2. limyi!+1G(y1; : : : ; yi; : : : ; yJ) = +1, for each i = 1; : : : ; J ,

3. the kth partial derivative with respect to k distinct yi is non-negative if k is

odd and non-positive if k is even that is, for any distinct indices i1; : : : ; ik 2

f1; : : : ; Jg, we have

(�1)k
@kG

@xi1 : : : @xik
(x) � 0; 8x 2 R

J
+ : (2)

Note that the homogeneity of G and Euler's theorem give

P (ijC) =
eVi+lnGi(:::)PJ
j=1 e

Vj+lnGj(:::)
; (3)

where Gi =
@G
@yi

.

It is well known that the Multinomial Logit and the Nested Logit models

are instances of this model family. We present now several formulations of the

Cross-Nested Logit model, derived from the GEV model.
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1.2 Formulations of the Cross-Nested Logit model

The limitations of the Nested Logit model has been observed by several authors

(Williams, 1977, Forinash and Koppelman, 1993). The requirement of unambigu-

ous assignment of alternatives to nests does not allow to capture mixed interac-

tions across alternatives.

It seems that the �rst Cross-Nested Logit model has been proposed by Small

(1987) in the context of departure time choice. Small's model, called the Ordered

GEV model, is based on the following function:

G(y1; : : : ; yj) =
J+MX
r=1

 X
Br

wr�jy
1=�r
j

!�r

; (4)

where M is a positive integer, �r and wm are constants satisfying 0 < �r � 1,

wm � 0 and
MX
m=0

wm = 1: (5)

The Br are overlapping subsets of alternatives:

Br = fj 2 f1; : : : ; Jgjr �M � j � rg: (6)

Vovsha (1997) applies the Cross-Nested Logit model to a mode choice appli-

cation, where the \park&ride" alternative is allowed to belong to the \composite

auto" and the \composite transit" nests. Vovsha derives the Cross-Nested Logit

from the GEV model with the generating function:

G(y1; : : : ; yJ) =
X
m

 X
j2C

�jmyj

!�

(7)

where m is the nest index, and �jm are model parameters such that

0 � �jm � 1 8j;m; (8)

and X
m

�jm > 0 8i: (9)

Vovsha (1997) imposes also thatX
m

��im = 1 8i: (10)
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Ben-Akiva and Bierlaire (1999) mention the CNL as an instance of a GEV

model, and based on the following generating function:

G(y1; : : : ; yJ) =
X
m

 X
j2C

�jmy
�m
j

! �
�m

: (11)

A similar formulation is used by Papola (2000), based on the following gen-

erating function:

G(y1; : : : ; yJ) =
X
k

 X
j2Ck

�
�0=�k
ik eVi=�k

! �k
�0

; (12)

with 0 � �k � �0. Papola imposes also thatX
k

�ik = 1 8i: (13)

2 Theoretical analysis

Among these formulations, (11) is the most general. Indeed, Vovsha's and Small's

formulations are speci�c cases of (11). We obtain Small's formulation (4) with

� = 1 and �m = 1=�m. Vovsha's formulation (7) is obtained from (11) with

�m = 1 for all m.

Papola's model (12) is equivalent to (11), with � = 1=�0, �m = 1=�m and

�jm = �
�0=�m
jm . However, Papola's constraint (13) is not required by our formula-

tion. Note that Small (5) and Vovsha (10) impose the same constraint.

The following theorem shows that (11) is indeed a GEV generating function.

Theorem 1 The following conditions are suÆcient for (11) to de�ne a GEV

generating function:

1. �jm � 0, 8j;m,

2.
P

m �jm > 0, 8j,

3. � > 0,

4. �m > 0, 8m,

5. � � �m, 8m.
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Proof. We show that, under these assumptions, (11) veri�es the four

properties of GEV generating functions.

1.G is obviously non negative, if y 2 R
n
+ .

2.G is homogeneous of degree �. Indeed,

G(�y) =
X
m

 X
j2C

�jm�
�my�mj

! �
�m

=
X
m

 
��m

X
j2C

�jmy
�m
j

! �
�m

=
X
m

��

 X
j2C

�jmy
�m
j

! �
�m

= ��
X
m

 X
j2C

�jmy
�m
j

! �
�m

= ��G(y):

3. The limit properties hold from assumption 2, that guarantees that there

is at least one non zero coeÆcient �jm for each alternative j.

limyi!1G(y1; : : : ; yJ) = limyi!1

P
m

�P
j2C �jmy

�m
j

� �
�m

=
P

m

�
limyi!1

�P
j2C �jmy

�m
j

� �
�m

�
= 1

(14)

4. The condition for the sign of the derivatives is obtained from (21) in

Lemma 2 (see Section 6). We distinguish three cases, considering only

y � 0.

(a) If k = 1, we have

@G(y)=@yj =
X
m

�
��jmy

�m�1
j A

���m
�m

m

�
� 0: (15)

(b) If k > 1 and � = �m, we have

@kG(y)=@yi1 : : : @yik = 0: (16)
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Indeed,
k�1Y
n=0

�
�

�m
� n

�
(17)

contains a zero factor when n = 1.

(c) If k > 1 and � < �m, the sign of (21) is entirely determined by

the sign of (17). For n > 0, we have �
�m

� n < 0 (assumption 5).

Therefore, there are k � 1 negative and one positive factors in the

product. We obtain that

k�1Y
n=0

�
�

�m
� n

�(
� 0 if k is odd

� 0 if k is even
(18)

Therefore, in any case, we have

@kG(y)=@yi1 : : : @yik

(
� 0 if k is odd

� 0 if k is even
(19)

�

This theorem motivates the absence in our formulation of a constraint similar

to (5), (10) and (13). Indeed, such a condition is not required to obtain a valid

GEV model and, consequently, to be consistent with discrete choice theory. In-

stead, they are used to enable parameter estimability. Indeed, it is impossible to

estimate all parameters of the GEV model, exactly as it is impossible to estimate

all Alternative Speci�c constants in a MNL or NL model (see Bierlaire, Lotan

and Toint, 1995).

3 Estimation procedure

The estimation procedures proposed by Small (1987) and Vovsha (1997) are based

on heuristics. Small reduces the number of free parameters by imposing arbitrary

restrictions on the parameters: wm = 1
M+1

, 8m, and �r = �, 8r. Vovsha proposes

a complicated heuristic, where each observation is arti�cially substituted with n

observations (Vovsha proposes n =100).

We prefer to use a pure maximum likelihood procedure. However, the problem

of estimability remains open. A detailed theoretical analysis of model overspeci�-

cation, similar to what Bierlaire et al. (1995) has done for the Alternative Speci�c
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Constants in the Nested Logit model, is currently ongoing. Meanwhile, we have

developed an optimization process which is able to handle overspeci�ed models.

A new model estimation package called Biogeme (BIerlaire's Optimization

routines for GEv Model Estimation) has been developed. It is designed to esti-

mate a wide variety of discrete choice models. Actually, any model out of the

GEV model family can be estimated. Moreover, non linear utility functions can

be handled. In particular, a speci�c scale parameter can be associated with

di�erent groups in the sample.

The optimization algorithm is based on a quasi-Newton BFGS method in a

trust-region framework (Conn, Gould and Toint, 2000). The trust-region sub-

problem is solved with a conjugate gradient method, which does not require the

solution of the Newton equations. These equations do not have a solution when

the approximation of the hessian matrix is singular (as it is the case with over-

speci�ed models). Instead, the conjugate gradient involves only matrix-vector

computations. The Newton method is known to be very slow when the objective

is not strictly convex at the solution. Also, it stops when a local maximum of

the log-likelihood function has been reached. The search for a global maximum

is out of the scope of the method. Despite these shortcomings, this optimiza-

tion algorithm is suÆciently robust to empirically analyze the structure of the

CNL model. An eÆcient estimation procedure will be derived later on, when the

structural analysis will be complete.

4 Preliminary empirical analysis

We have performed a preliminary empirical analysis of the model estimability.

Our main objective is to assess the relevance of conditions (5), (10) and (13)

mentioned in the literature.

We analyze a trivial model, with 3 alternatives. The utility functions are

just composed of the ASCs. The sample contains 3 observations, each one corre-

sponding to a di�erent alternative. It is well know that the maximum likelihood

estimator for a MNL model is obtained with all ASC being equal (say to zero).

The associated log-likelihood is �3 ln 3 � �3:29584. Clearly, using a CNL model

for such a trivial model cannot improve the log-likelihood. But we see that the

same log-likelihood can be obtained with various combinations of parameters

values.
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1 2 3 4

asc1 0.0 0.0 0.0 0.0

asc2 0.0 0.0 0.0 -0.45

asc3 0.0 0.0 0.0 -0.69

� 1.0 1.0 1.0 1.0

�1 1.0 1.0 1.0 1.0

�2 1.0 1.0 1.0 1.0

�11 0.5 0.0 1.0 1.0

�21 0.5 1.0 1.0 1.0

�31 0.5 1.0 1.0 1.0

�12 1.0 2.0 1.0 1.0

�22 1.0 1.0 1.0 2.0

�23 1.0 1.0 1.0 3.0

Table 1: Optimal parameters for the trivial model

We conjecture that if X
m

�
�=�m
im = K; 8i; K > 0; (20)

then the interpretation of the ASC is consistent with random utility theory.

Note that condition (5) by Small, condition (10) by Vovsha and condition (13) by

Papola are equivalent to (20), with K = 1. If (20) is not veri�ed, we still have a

valid model with a perfect predictive capability. However, the usual interpretation

of the ASC parameters is not relevant anymore.

We illustrate that conjecture in Table 1, which contains sets of maximum

likelihood estimators of the parameters. The parameters contained in each col-

umn provide the exact same log-likelihood (�3 ln 3). Condition (20) is veri�ed

for columns 1 to 3. We observe that the optimal value of the ASC are the same

as the MNL. In column 4, where the condition is not veri�ed, the values of the

ASC are completely di�erent. We note also that the � parameter may take values

larger than 1, and that the value of K in(20) is not necessarily 1 (K=1 in column

1, and K = 2 in columns 2 and 3). We have observed similar behavior with a

non trivial model on a combined RP/SP data set for mode choice in Switzerland

(Bierlaire, Axhausen and Abbay, 2001). In that case, it seems that the \regular"

parameters (for cost or time) are independent from the validity of 20, while the
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ASCs are clearly a�ected.

We have shown that (20) is not necessary for the CNL to be part of the

GEV model family. Therefore, it may be adequate to ignore it. We suggest that

condition (20) is violated for estimation purposes, as it provides more degrees of

freedom to the algorithms and avoid to handle linear constraints. But once an

estimated model is obtained, an equivalent model verifying (20) must be derived,

in order to provide values of the parameters that can be analyzed in a usual

way. We also note that the constant K in (20) does not necessarily need to be

one. Formal proofs of these statements must of course be provided. Such proofs

are straightforward for the trivial model used for empirical analysis, but not

interesting. The proof for the general case is much more diÆcult. This research

is currently ongoing.

5 Conclusion and perspectives

In this paper, we have provided and analyzed a general formulation of the cross-

nested logit model. It generalizes existing formulations in the literature. We

have proved that, under mild conditions, the formulation is consistent with GEV

models.

Also, we have performed preliminary analysis of a condition on the parameters

imposed on formulations published in the literature. We have proved that this

condition is not necessary for the theoretical properties of the model. But it is

important for practical properties, related to parameter estimability, and model

comparison. We have identi�ed an extension of this condition that is important in

order to correctly interpret the estimated parameters. The condition is therefore

desirable for practical purposes, but not necessary to have a model with prediction

capabilities.

The CNL model is appealing to capture complex situations where correlations

cannot be handled by the Nested Logit model. Even with few alternative and

nests, the use of a CNL instead of a NL model may signi�cantly improve the

estimated model (Bierlaire et al., 2001). The price to pay is the diÆculty to

estimate the model parameters. We have adopted a robust method with does not

require the model to be fully estimable in order to �nd an optimal value of the

parameters. However, because the second derivative matrix of the log-likelihood

function is singular at the solution, we cannot compute a reliable estimation of the
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variance covariance matrix associated with the estimates. Also, the estimation

algorithm, based on a quasi-Newton approach, can be very slow.

An formal analysis of the sources of overspeci�cation, similar to what Bierlaire

et al. (1995) have made for the Nested Logit Model, is required in order to obtain

an eÆcient estimation process, and a good estimates of the variance-covariance

matrix of the estimated parameters.

6 Annex: Lemma

The following Lemma has been proven by Nicolas Antille, who is gratefully ac-

knowledged.

Lemma 2 Let i1,...,ik be k di�erent indices (k > 0) arbitrarily chosen within

f1; : : : ; Jg. If G is de�ned by (11), then @kG(y)=@yi1 : : : @yik =

X
m

 
�km

ikY
n=i1

�
�nmy

�m�1
n

� k�1Y
n=0

�
�

�m
� n

�
A

��k�m
�m

m

!
(21)

where

Am =
X
j2C

�jmy
�m
j : (22)

Proof. The proof is by induction. We have

@kG(y)

@yi1
=

X
m

�
�

�m
A

���m
�m

m �m�i1my
�m�1
i1

�

=
X
m

�
�m�i1my

�m�1
i1

�

�m
A

���m
�m

m

�

proving the result for k = 1.

Assuming now that the result is veri�ed for k, we have @k+1G(y)=@yi1 : : : @yik+1
=

@
@yik+1

@kG(y)
@yi1 :::@yik

= @
@yik+1

P
m

�
�km
Qik

n=i1
(�nmy

�m�1
n )

Qk�1
n=0

�
�
�m

� n
�
A

��k�m
�m

m

�
=

P
m �km

Qik
n=i1

(�nmy
�m�1
n )

Qk�1
n=0

�
�
�m

� n
��

�
�m

� k
�
A

��k�m��m
�m

m �ik+1
�my

�m�1
ik+1

=
P

m

�
�k+1m

Qik+1

n=i1
(�nmy

�m�1
n )

Qk
n=0

�
�
�m

� n
�
A

��(k+1)�m
�m

m

�
:

That concludes the proof. �
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7 Annex: Derivatives

We provide here the derivatives of the log-likelihood function for GEV models in

general, and for the Cross-Nested Logit model in particular. Given a sample of

observations, the log-likelihood of the sample is

L =
X

n2sample

lnP (injCn); (23)

where in is the alternative actually chosen by individual n, Cn is the choice set,

and
lnP (injC) = �nVin

+ lnGin(e
�nV1 ; : : : ; e�nVJ )

� ln
�P

j e
�nVjGj(e

�nV1 ; : : : ; e�nVJ )
� (24)

where Gi = @G=@yi and �n is a scale parameter associated to individual n. This

parameter allows to estimate models with heterogeneous samples, without using

complicated nested structures.

If �k is a parameter appearing in the utility functions V1; : : : ; VJ , we have

@
@�k

lnP = � @Vi
@�k

+ 1
Gi

PJ
j=1

@Gi

@xj
e�Vj�

@Vj
@�k

� 1
�

P
j e

�Vj

�
� @Vj
@�k

Gj +
PJ

n=1
@Gj

@xn
e�Vn�@Vn

@�k

� (25)

where

� =
X
j

e�VjGj (26)

Note that we do not assume here that the Vj are linear-in-parameters, so that

@Vj=@�k is not necessarily a constant.

The derivatives with respect to model parameters �k` are given by

@

@�k`
lnP =

1

Gi

@Gi

@�k`
�

1

�

X
j

e�Vj
@Gj

@�k`
(27)

The derivatives with respect to model parameters �k are given by

@

@�k
lnP =

1

Gi

@Gi

@�k
�

1

�

X
j

e�Vj
@Gj

@�k
(28)

The derivative with respect to model parameter � is given by

@

@�
lnP =

1

Gi

@Gi

@�
�

1

�

X
j

e�Vj
@Gj

@�
(29)
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The derivative with respect to the scale parameter � is given by

@

@�
lnP = Vi +

1

Gi

@Gi

@�
�

1

�

@�

@�
(30)

where
@Gi

@�
=
X
j

Vje
�Vj

@Gi

@xj
(31)

and
@�

@�
=
X
j

�
Vje

�VjGj + e�Vj
@Gj

@�

�
(32)

Finally, we provide the �rst and second derivatives of (11) with respect to

every parameter. The �rst derivative with respect to a variable xi is given by

Gi =
@G

@xi
= �

X
m

�imx
�m�1
i

 X
j

�jmx
�m
j

! �
�m
�1

(33)

The �rst derivative with respect to the � parameter is

@G

@�
=
X
m

1

�m
y

�
�m
m ln(ym) (34)

where

ym =
X
j2Cm

�jmx
�m
j (35)

The �rst derivative with respect to the nest parameter �m is

@G

@�m
=

�

�m
y

�
�m
�1

m

 X
j2Cm

�jmx
�m
j ln(xj)

!
�

�

�2m
y

�
�m
m ln(ym) (36)

and with respect to the � parameter is

@G

@�im
=

�

�m
y

�
�m
�1

m x�ki (37)

where

ym =
X
j2Cm

�jmx
�m
j (38)

We now provide the second derivative with respect to xi and xj. If i = j, we

have

@2G

@x2i
=
@Gi

@xi
=
X
m

�

�m
y

�
�m
�2

m �im�mx
�m�2
i ((

�

�m
�1)�im�mx

�m
i +ym(�m�1)) (39)
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and if i 6= j, we have

@2G

@xi@xj
=
@Gi

@xj
=
X
m

�m�(
�

�m
� 1)�im�jmy

�
�m
�2

m x�m�1i x�m�1j (40)

where

ym =
X
j2Cm

�jmx
�m
j (41)

The second derivative with respect to xi and � is

@2G

@xi@�
=
@Gi

@�
=
X
m

y
�
�m
�1

m �imx
�m�1
i (1 +

�

�m
ln(ym)) (42)

where

ym =
X
j2Cm

�jmx
�m
j (43)

The second derivative with respect to xi and �m is

@2G
@xi@�m

= @Gi

@�m

= � �
�m
y

�
�m
�1

m �imx
�m�1
i � �2

�2m
y

�
�m
�1

m ln(ym)�imx
�m�1
i

+ �
�m
y

�
�m
�1

m �imx
�m�1
i + �y

�
�m
�1

m �imx
�m�1
i ln(xi):

(44)

The second derivative with respect to xi and �ik is

@2G

@xi@�ik
= �x�k�1i y

�
�k
�1

k

�
1 + �ik(

�

�k
� 1)y�1k x�ki

�
(45)

and with respect to xi and �jk (i 6= j) is

@2G

@xi@�jk
= ��ikx

�k�1
i (

�

�k
� 1)y

�
�k
�2

k x�kj (46)

where

ym =
X
j2Cm

�jmx
�m
j (47)
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